Acronym | n,tet-dip |
Name |
n-gon - tetrahedron duoprism, n-gonal duofastegium, n-gonal prism disphenoid |
Circumradius | sqrt[3/8+1/(4 sin2(π/n))] |
Lace city in approx. ASCII-art |
x x-n-x o x-n-x o x-n-x |
Lace hyper city in approx. ASCII-art |
x-n-x x-n-x x-n-x x-n-x(disphenoid in configuration space) |
Face vector | 4n, 10n, 10n+4, 5n+6, n+4 |
Especially | tratet (n=3) squatet (n=4) petet (n=5) hatet (n=6) otet (n=8) stotet (n=8/3) |
Confer |
|
Incidence matrix according to Dynkin symbol
xno x3o3o (n>2) . . . . . | 4n | 2 3 | 1 6 3 | 3 6 1 | 3 2 ----------+----+-------+---------+--------+---- x . . . . | 2 | 4n * | 1 3 0 | 3 3 0 | 3 1 . . x . . | 2 | * 6n | 0 2 2 | 1 4 1 | 2 2 ----------+----+-------+---------+--------+---- xno . . . | n | n 0 | 4 * * | 3 0 0 | 3 0 x . x . . | 4 | 2 2 | * 6n * | 1 2 0 | 2 1 . . x3o . | 3 | 0 3 | * * 4n | 0 2 1 | 1 2 ----------+----+-------+---------+--------+---- xno x . . ♦ 2n | 2n n | 2 n 0 | 6 * * | 2 0 x . x3o . ♦ 6 | 3 6 | 0 3 2 | * 4n * | 1 1 . . x3o3o ♦ 4 | 0 6 | 0 0 4 | * * n | 0 2 ----------+----+-------+---------+--------+---- xno x3o . ♦ 3n | 3n 3n | 3 3n n | 3 n 0 | 4 * x . x3o3o ♦ 8 | 4 12 | 0 6 8 | 0 4 2 | * n
ox3oo xxnoo&#x (n>2) → height = sqrt(2/3) = 0.816497
({n} || 3,n-dip)
o.3o. o.no. | n * | 2 3 0 0 | 1 3 6 0 0 0 | 1 6 3 0 0 | 2 3 0
.o3.o .on.o | * 3n | 0 1 2 2 | 0 2 2 1 4 1 | 1 4 1 2 2 | 2 2 1
---------------+------+------------+----------------+------------+------
.. .. x. .. | 2 0 | n * * * | 1 0 3 0 0 0 | 0 3 3 0 0 | 1 3 0
oo3oo oonoo&#x | 1 1 | * 3n * * | 0 2 2 0 0 0 | 1 4 1 0 0 | 2 2 0
.x .. .. .. | 0 2 | * * 3n * | 0 1 0 1 2 0 | 1 2 0 2 1 | 2 1 1
.. .. .x .. | 0 2 | * * * 3n | 0 0 1 0 2 1 | 0 2 1 1 2 | 1 2 1
---------------+------+------------+----------------+------------+------
.. .. x.no. | n 0 | n 0 0 0 | 1 * * * * * | 0 0 3 0 0 | 0 3 0
ox .. .. ..&#x | 1 2 | 0 2 1 0 | * 3n * * * * | 1 2 0 0 0 | 2 1 0
.. .. xx ..&#x | 2 2 | 1 2 0 1 | * * 3n * * * | 0 2 1 0 0 | 1 2 0
.x3.o .. .. | 0 3 | 0 0 3 0 | * * * n * * | 1 0 0 2 0 | 2 0 1
.x .. .x .. | 0 4 | 0 0 2 2 | * * * * 3n * | 0 1 0 1 1 | 1 1 1
.. .. .xn.o | 0 n | 0 0 0 n | * * * * * 3 | 0 0 1 0 2 | 0 2 1
---------------+------+------------+----------------+------------+------
ox3oo .. ..&#x ♦ 1 3 | 0 3 3 0 | 0 3 0 1 0 0 | n * * * * | 2 0 0
ox .. xx ..&#x ♦ 2 4 | 1 4 2 2 | 0 2 2 0 1 0 | * 3n * * * | 1 1 0
.. .. xxnoo&#x ♦ n n | n n 0 n | 1 0 n 0 0 1 | * * 3 * * | 0 2 0
.x3.o .x .. ♦ 0 6 | 0 0 6 3 | 0 0 0 2 3 0 | * * * n * | 1 0 1
.x .. .xn.o ♦ 0 2n | 0 0 n 2n | 0 0 0 0 n 2 | * * * * 3 | 0 1 1
---------------+------+------------+----------------+------------+------
ox3oo xx .. ♦ 2 6 | 1 6 6 3 | 0 6 3 2 3 0 | 2 3 0 1 0 | n * *
ox .. xxnoo&#x ♦ n 2n | n 2n n 2n | 1 n 2n 0 n 2 | 0 n 2 0 1 | * 3 *
.x3.o .xn.o ♦ 0 3n | 0 0 3n 3n | 0 0 0 n 3n 3 | 0 0 0 n 3 | * * 1
ox xo xxnoo&#x (n>2) → height = 1/sqrt(2) = 0.707107
(n-p || lacing-ortho n-p)
o. o. o.no. | 2n * | 1 2 2 0 0 | 2 1 1 2 4 0 0 | 1 1 2 4 2 0 | 2 1 2
.o .o .on.o | * 2n | 0 0 2 1 2 | 0 0 2 1 4 2 1 | 0 1 4 2 2 1 | 2 2 1
---------------+-------+--------------+------------------+---------------+------
.. x. .. .. | 2 0 | n * * * * | 2 0 0 2 0 0 0 | 1 1 0 2 0 0 | 2 0 2
.. .. x. .. | 2 0 | * 2n * * * | 1 1 0 0 2 0 0 | 1 0 1 2 2 0 | 1 1 2
oo oo oonoo&#x | 1 1 | * * 4n * * | 0 0 1 1 2 0 0 | 0 1 2 2 1 0 | 2 1 1
.x .. .. .. | 0 2 | * * * n * | 0 0 2 0 0 2 0 | 0 1 4 0 0 1 | 2 2 0
.. .. .x .. | 0 2 | * * * * 2n | 0 0 0 0 2 1 1 | 0 0 2 1 2 1 | 1 2 1
---------------+-------+--------------+------------------+---------------+------
.. x. x. .. | 4 0 | 2 2 0 0 0 | n * * * * * * | 1 0 0 2 0 0 | 1 0 2
.. .. x.no. | n 0 | 0 n 0 0 0 | * 2 * * * * * | 1 0 0 0 2 0 | 0 1 2
ox .. .. ..&#x | 1 2 | 0 0 2 1 0 | * * 2n * * * * | 0 1 2 0 0 0 | 2 1 0
.. xo .. ..&#x | 2 1 | 1 0 2 0 0 | * * * 2n * * * | 0 1 0 2 0 0 | 2 0 1
.. .. xx ..&#x | 2 2 | 0 1 2 0 1 | * * * * 4n * * | 0 0 1 1 1 0 | 1 1 1
.x .. .x .. | 0 4 | 0 0 0 2 2 | * * * * * n * | 0 0 2 0 0 1 | 1 2 0
.. .. .xn.o | 0 n | 0 0 0 0 n | * * * * * * 2 | 0 0 0 0 2 1 | 0 2 1
---------------+-------+--------------+------------------+---------------+------
.. x. x.no. ♦ 2n 0 | n 2n 0 0 0 | n 2 0 0 0 0 0 | 1 * * * * * | 0 0 2
ox xo .. ..&#x ♦ 2 2 | 1 0 4 1 0 | 0 0 2 2 0 0 0 | * n * * * * | 2 0 0
ox .. xx ..&#x ♦ 2 4 | 0 1 4 2 2 | 0 0 2 0 2 1 0 | * * 2n * * * | 1 1 0
.. xo xx ..&#x ♦ 4 2 | 2 2 4 0 1 | 1 0 0 2 2 0 0 | * * * 2n * * | 1 0 1
.. .. xxnoo&#x ♦ n n | 0 n n 0 n | 0 1 0 0 n 0 1 | * * * * 4 * | 0 1 1
.x .. .xn.o ♦ 0 2n | 0 0 0 n 2n | 0 0 0 0 0 n 2 | * * * * * 1 | 0 2 0
---------------+-------+--------------+------------------+---------------+------
ox xo xx ..&#x ♦ 4 4 | 2 2 8 2 2 | 1 0 4 4 4 1 0 | 0 2 2 2 0 0 | n * *
ox .. xxnoo&#x ♦ n 2n | 0 n 2n n 2n | 0 1 n 0 2n n 2 | 0 0 n 0 2 1 | * 2 *
.. xo xxnoo&#x ♦ 2n n | n 2n 2n 0 n | n 2 0 n 2n 0 1 | 1 0 0 n 2 0 | * * 2
© 2004-2024 | top of page |