Acronym | n,id-dippip |
Name | n-gon - icosidodecahedron duoprismatic prism |
Face vector | 60n, 210n, 274n+60, 158n+150, 35n+124, n+34 |
Especially | tridep (n=3) cubid (n=4) |
Confer |
|
Incidence matrix according to Dynkin symbol
x xno o3x5o (n>2) . . . . . . | 60n | 1 2 4 | 2 4 1 8 2 2 | 1 8 2 2 4 4 4 1 | 4 4 4 1 2 2 2 | 2 2 2 1 ------------+-----+--------------+-------------------------+-------------------------------+-----------------------+---------- x . . . . . | 2 | 30n * * | 2 4 0 0 0 0 | 1 8 2 2 0 0 0 0 | 4 4 4 1 0 0 0 | 2 2 2 0 . x . . . . | 2 | * 60n * | 1 0 1 4 0 0 | 1 4 0 0 4 2 2 0 | 4 2 2 0 2 2 1 | 2 2 1 1 . . . . x . | 2 | * * 120n | 0 1 0 2 1 1 | 0 2 1 1 1 2 2 1 | 1 2 2 1 1 1 2 | 1 1 2 1 ------------+-----+--------------+-------------------------+-------------------------------+-----------------------+---------- x x . . . . | 4 | 2 2 0 | 30n * * * * * | 1 4 0 0 0 0 0 0 | 4 2 2 0 0 0 0 | 2 2 1 0 x . . . x . | 4 | 2 0 2 | * 60n * * * * | 0 2 1 1 0 0 0 0 | 1 2 2 1 0 0 0 | 1 1 2 0 . xno . . . | n | 0 n 0 | * * 60 * * * | 1 0 0 0 4 0 0 0 | 4 0 0 0 2 2 0 | 2 2 0 1 . x . . x . | 4 | 0 2 2 | * * * 120n * * | 0 1 0 0 1 1 1 0 | 1 1 1 0 1 1 1 | 1 1 1 1 . . . o3x . | 3 | 0 0 3 | * * * * 40n * | 0 0 1 0 0 2 0 1 | 0 2 0 1 1 0 2 | 1 0 2 1 . . . . x5o | 5 | 0 0 5 | * * * * * 24n | 0 0 0 1 0 0 2 1 | 0 0 2 1 0 1 2 | 0 1 2 1 ------------+-----+--------------+-------------------------+-------------------------------+-----------------------+---------- x xno . . . ♦ 2n | n 2n 0 | n 0 2 0 0 0 | 30 * * * * * * * | 4 0 0 0 0 0 0 | 2 2 0 0 x x . . x . ♦ 8 | 4 4 4 | 2 2 0 2 0 0 | * 60n * * * * * * | 1 1 1 0 0 0 0 | 1 1 1 0 x . . o3x . ♦ 6 | 3 0 6 | 0 3 0 0 2 0 | * * 20n * * * * * | 0 2 0 1 0 0 0 | 1 0 2 0 x . . . x5o ♦ 10 | 5 0 10 | 0 5 0 0 0 2 | * * * 12n * * * * | 0 0 2 1 0 0 0 | 0 1 2 0 . xno . x . ♦ 2n | 0 2n n | 0 0 2 n 0 0 | * * * * 120 * * * | 1 0 0 0 1 1 0 | 1 1 0 1 . x . o3x . ♦ 6 | 0 3 6 | 0 0 0 3 2 0 | * * * * * 40n * * | 0 1 0 0 1 0 1 | 1 0 1 1 . x . . x5o ♦ 10 | 0 5 10 | 0 0 0 5 0 2 | * * * * * * 24n * | 0 0 1 0 0 1 1 | 0 1 1 1 . . . o3x5o ♦ 30 | 0 0 60 | 0 0 0 0 20 12 | * * * * * * * 2n | 0 0 0 1 0 0 2 | 0 0 2 1 ------------+-----+--------------+-------------------------+-------------------------------+-----------------------+---------- x xno . x . ♦ 4n | 2n 4n 2n | 2n n 4 2n 0 0 | 2 n 0 0 2 0 0 0 | 60 * * * * * * | 1 1 0 0 x x . o3x . ♦ 12 | 6 6 12 | 3 6 0 6 4 0 | 0 3 2 0 0 2 0 0 | * 20n * * * * * | 1 0 1 0 x x . . x5o ♦ 20 | 10 10 20 | 5 10 0 10 0 4 | 0 5 0 2 0 0 2 0 | * * 12n * * * * | 0 1 1 0 x . . o3x5o ♦ 60 | 30 0 120 | 0 60 0 0 40 24 | 0 0 20 12 0 0 0 2 | * * * n * * * | 0 0 2 0 . xno o3x . ♦ 3n | 0 3n 3n | 0 0 3 3n n 0 | 0 0 0 0 3 n 0 0 | * * * * 40 * * | 1 0 0 1 . xno . x5o ♦ 5n | 0 5n 5n | 0 0 5 5n 0 n | 0 0 0 0 5 0 n 0 | * * * * * 24 * | 0 1 0 1 . x . o3x5o ♦ 60 | 0 30 120 | 0 0 0 60 40 24 | 0 0 0 0 0 20 12 2 | * * * * * * 2n | 0 0 1 1 ------------+-----+--------------+-------------------------+-------------------------------+-----------------------+---------- x xno o3x . ♦ 6n | 3n 6n 6n | 3n 3n 6 6n 2n 0 | 3 3n n 0 6 2n 0 0 | 3 n 0 0 2 0 0 | 20 * * * x xno . x5o ♦ 10n | 5n 10n 10n | 5n 5n 10 10n 0 2n | 5 5n 0 n 10 0 2n 0 | 5 0 n 0 0 2 0 | * 12 * * x x . o3x5o ♦ 120 | 60 60 240 | 30 120 0 120 80 48 | 0 60 40 24 0 40 24 4 | 0 20 12 2 0 0 2 | * * n * . xno o3x5o ♦ 30n | 0 30n 60n | 0 0 30 60n 20n 12n | 0 0 0 0 60 20n 12n n | 0 0 0 0 20 12 n | * * * 2
© 2004-2024 | top of page |