Acronym n,id-dippip
Name n-gon - icosidodecahedron duoprismatic prism
Face vector 60n, 210n, 274n+60, 158n+150, 35n+124, n+34
Especially tridep (n=3)   cubid (n=4)  
Confer
general polytopal classes:
Wythoffian polypeta  

Incidence matrix according to Dynkin symbol

x xno o3x5o   (n>2)

. . . . . . | 60n |   1   2    4 |   2   4  1    8   2   2 |  1   8   2   2   4   4   4  1 |  4   4   4 1  2  2  2 |  2  2 2 1
------------+-----+--------------+-------------------------+-------------------------------+-----------------------+----------
x . . . . . |   2 | 30n   *    * |   2   4  0    0   0   0 |  1   8   2   2   0   0   0  0 |  4   4   4 1  0  0  0 |  2  2 2 0
. x . . . . |   2 |   * 60n    * |   1   0  1    4   0   0 |  1   4   0   0   4   2   2  0 |  4   2   2 0  2  2  1 |  2  2 1 1
. . . . x . |   2 |   *   * 120n |   0   1  0    2   1   1 |  0   2   1   1   1   2   2  1 |  1   2   2 1  1  1  2 |  1  1 2 1
------------+-----+--------------+-------------------------+-------------------------------+-----------------------+----------
x x . . . . |   4 |   2   2    0 | 30n   *  *    *   *   * |  1   4   0   0   0   0   0  0 |  4   2   2 0  0  0  0 |  2  2 1 0
x . . . x . |   4 |   2   0    2 |   * 60n  *    *   *   * |  0   2   1   1   0   0   0  0 |  1   2   2 1  0  0  0 |  1  1 2 0
. xno . . . |   n |   0   n    0 |   *   * 60    *   *   * |  1   0   0   0   4   0   0  0 |  4   0   0 0  2  2  0 |  2  2 0 1
. x . . x . |   4 |   0   2    2 |   *   *  * 120n   *   * |  0   1   0   0   1   1   1  0 |  1   1   1 0  1  1  1 |  1  1 1 1
. . . o3x . |   3 |   0   0    3 |   *   *  *    * 40n   * |  0   0   1   0   0   2   0  1 |  0   2   0 1  1  0  2 |  1  0 2 1
. . . . x5o |   5 |   0   0    5 |   *   *  *    *   * 24n |  0   0   0   1   0   0   2  1 |  0   0   2 1  0  1  2 |  0  1 2 1
------------+-----+--------------+-------------------------+-------------------------------+-----------------------+----------
x xno . . .   2n |   n  2n    0 |   n   0  2    0   0   0 | 30   *   *   *   *   *   *  * |  4   0   0 0  0  0  0 |  2  2 0 0
x x . . x .    8 |   4   4    4 |   2   2  0    2   0   0 |  * 60n   *   *   *   *   *  * |  1   1   1 0  0  0  0 |  1  1 1 0
x . . o3x .    6 |   3   0    6 |   0   3  0    0   2   0 |  *   * 20n   *   *   *   *  * |  0   2   0 1  0  0  0 |  1  0 2 0
x . . . x5o   10 |   5   0   10 |   0   5  0    0   0   2 |  *   *   * 12n   *   *   *  * |  0   0   2 1  0  0  0 |  0  1 2 0
. xno . x .   2n |   0  2n    n |   0   0  2    n   0   0 |  *   *   *   * 120   *   *  * |  1   0   0 0  1  1  0 |  1  1 0 1
. x . o3x .    6 |   0   3    6 |   0   0  0    3   2   0 |  *   *   *   *   * 40n   *  * |  0   1   0 0  1  0  1 |  1  0 1 1
. x . . x5o   10 |   0   5   10 |   0   0  0    5   0   2 |  *   *   *   *   *   * 24n  * |  0   0   1 0  0  1  1 |  0  1 1 1
. . . o3x5o   30 |   0   0   60 |   0   0  0    0  20  12 |  *   *   *   *   *   *   * 2n |  0   0   0 1  0  0  2 |  0  0 2 1
------------+-----+--------------+-------------------------+-------------------------------+-----------------------+----------
x xno . x .   4n |  2n  4n   2n |  2n   n  4   2n   0   0 |  2   n   0   0   2   0   0  0 | 60   *   * *  *  *  * |  1  1 0 0
x x . o3x .   12 |   6   6   12 |   3   6  0    6   4   0 |  0   3   2   0   0   2   0  0 |  * 20n   * *  *  *  * |  1  0 1 0
x x . . x5o   20 |  10  10   20 |   5  10  0   10   0   4 |  0   5   0   2   0   0   2  0 |  *   * 12n *  *  *  * |  0  1 1 0
x . . o3x5o   60 |  30   0  120 |   0  60  0    0  40  24 |  0   0  20  12   0   0   0  2 |  *   *   * n  *  *  * |  0  0 2 0
. xno o3x .   3n |   0  3n   3n |   0   0  3   3n   n   0 |  0   0   0   0   3   n   0  0 |  *   *   * * 40  *  * |  1  0 0 1
. xno . x5o   5n |   0  5n   5n |   0   0  5   5n   0   n |  0   0   0   0   5   0   n  0 |  *   *   * *  * 24  * |  0  1 0 1
. x . o3x5o   60 |   0  30  120 |   0   0  0   60  40  24 |  0   0   0   0   0  20  12  2 |  *   *   * *  *  * 2n |  0  0 1 1
------------+-----+--------------+-------------------------+-------------------------------+-----------------------+----------
x xno o3x .   6n |  3n  6n   6n |  3n  3n  6   6n  2n   0 |  3  3n   n   0   6  2n   0  0 |  3   n   0 0  2  0  0 | 20  * * *
x xno . x5o  10n |  5n 10n  10n |  5n  5n 10  10n   0  2n |  5  5n   0   n  10   0  2n  0 |  5   0   n 0  0  2  0 |  * 12 * *
x x . o3x5o  120 |  60  60  240 |  30 120  0  120  80  48 |  0  60  40  24   0  40  24  4 |  0  20  12 2  0  0  2 |  *  * n *
. xno o3x5o  30n |   0 30n  60n |   0   0 30  60n 20n 12n |  0   0   0   0  60 20n 12n  n |  0   0   0 0 20 12  n |  *  * * 2

© 2004-2025
top of page