Acronym | n-azedip |
Name | n-gonal - apeirogonal duoprism |
Especially | squat (n=∞) |
Confer | n,m-dip 2n,m-dip 2n,2m-dip |
External links |
Although this looks just like a mere axial tower of n-gonal prisms, it still is a honeycomb of the complete space: the outer empty space may well be considered filled by n inifinite-gonal prisms each.
It also is an extension of the general n,m-duoprism, thereby becoming a flat honeycomb.
Incidence matrix according to Dynkin symbol
xNo xno (N → ∞, n>2) . . . . | Nn | 2 2 | 1 4 1 | 2 2 --------+----+-------+--------+---- x . . . | 2 | Nn * | 1 2 0 | 2 1 . . x . | 2 | * Nn | 0 2 1 | 1 2 --------+----+-------+--------+---- xNo . . ♦ N | N 0 | n * * | 2 0 x . x . | 4 | 2 2 | * Nn * | 1 1 . . xno | n | 0 n | * * N | 0 2 --------+----+-------+--------+---- xNo x . ♦ 2N | 2N N | 2 N 0 | n * x . xno ♦ 2n | n 2n | 0 n 2 | * N
xNx xno (N → ∞, n>2) . . . . | 2Nn | 1 1 2 | 1 2 2 1 | 2 1 1 --------+-----+-----------+------------+------ x . . . | 2 | Nn * * | 1 2 0 0 | 2 1 0 . x . . | 2 | * Nn * | 1 0 2 0 | 2 0 1 . . x . | 2 | * * 2Nn | 0 1 1 1 | 1 1 1 --------+-----+-----------+------------+------ xNx . . ♦ 2N | N N 0 | n * * * | 2 0 0 x . x . | 4 | 2 0 2 | * Nn * * | 1 1 0 . x x . | 4 | 0 2 2 | * * Nn * | 1 0 1 . . xno | n | 0 0 n | * * * 2N | 0 1 1 --------+-----+-----------+------------+------ xNx x . ♦ 4N | 2N 2N 2N | 2 N N 0 | n * * x . xno ♦ 2n | n 0 2n | 0 n 0 2 | * N * . x xno ♦ 2n | 0 n 2n | 0 0 n 2 | * * N
xNx sns (N → ∞, n>2) . . demi( . . ) | 2Nn | 1 1 2 | 1 2 2 1 | 2 1 1 ----------------+-----+-----------+------------+------ x . demi( . . ) | 2 | Nn * * | 1 2 0 0 | 2 1 0 . x demi( . . ) | 2 | * Nn * | 1 0 2 0 | 2 0 1 . . sefa( sns ) | 2 | * * 2Nn | 0 1 1 1 | 1 1 1 ----------------+-----+-----------+------------+------ xNx demi( . . ) ♦ 2N | N N 0 | n * * * | 2 0 0 x . sefa( sns ) | 4 | 2 0 2 | * Nn * * | 1 1 0 . x sefa( sns ) | 4 | 0 2 2 | * * Nn * | 1 0 1 . . sns ♦ n | 0 0 n | * * * 2N | 0 1 1 ----------------+-----+-----------+------------+------ xNx sefa( sns ) ♦ 4N | 2N 2N 2N | 2 N N 0 | n * * x . sns ♦ 2n | n 0 2n | 0 n 0 2 | * N * . x sns ♦ 2n | 0 n 2n | 0 0 n 2 | * * N
© 2004-2024 | top of page |