Acronym mipthi
Name medial prismatotriakishecatonicosachoron
Colonel of regiment (is itself locally convex – uniform polychoral members:
 by cells: gaddid quitdid stip tid mipthi 120 120 720 120
& others)
External

As abstract polytope mipthi is isomorphic to gapthi, thereby replacing pentagrams by pentagons and interchanging decagrams and decagons, respectively replacing tid by quit gissid, stip by pip, and gaddid by saddid.

Likewise it is isomorphic to sid thipady, thereby interchanging decagrams and decagons only, respectively replacing tid by quit gissid, gaddid by sidditdid.

Further it is isomorphic to gid thipady, thereby replacing pentagons by pentagrams, respectively stip by pip and gaddid by gidditdid.

Incidence matrix according to Dynkin symbol

```x5x3o5/2x5/3*b

. . .   .      | 7200 |    1    2    2 |    2    2    1    2    1 |   1   2   1   1
---------------+------+----------------+--------------------------+----------------
x . .   .      |    2 | 3600    *    * |    2    2    0    0    0 |   1   2   1   0
. x .   .      |    2 |    * 7200    * |    1    0    1    1    0 |   1   1   0   1
. . .   x      |    2 |    *    * 7200 |    0    1    0    1    1 |   0   1   1   1
---------------+------+----------------+--------------------------+----------------
x5x .   .      |   10 |    5    5    0 | 1440    *    *    *    * |   1   1   0   0
x . .   x      |    4 |    2    0    2 |    * 3600    *    *    * |   0   1   1   0
. x3o   .      |    3 |    0    3    0 |    *    * 2400    *    * |   1   0   0   1
. x .   x5/3*b |   10 |    0    5    5 |    *    *    * 1440    * |   0   1   0   1
. . o5/2x      |    5 |    0    0    5 |    *    *    *    * 1440 |   0   0   1   1
---------------+------+----------------+--------------------------+----------------
x5x3o   .      ♦   60 |   30   60    0 |   12    0   20    0    0 | 120   *   *   *
x5x .   x5/3*b ♦  120 |   60   60   60 |   12   30    0   12    0 |   * 120   *   *
x . o5/2x      ♦   10 |    5    0   10 |    0    5    0    0    2 |   *   * 720   *
. x3o5/2x5/3*b ♦   60 |    0   60   60 |    0    0   20   12   12 |   *   *   * 120
```

```x5x3/2o5/3x5/3*b

. .   .   .      | 7200 |    1    2    2 |    2    2    1    2    1 |   1   2   1   1
-----------------+------+----------------+--------------------------+----------------
x .   .   .      |    2 | 3600    *    * |    2    2    0    0    0 |   1   2   1   0
. x   .   .      |    2 |    * 7200    * |    1    0    1    1    0 |   1   1   0   1
. .   .   x      |    2 |    *    * 7200 |    0    1    0    1    1 |   0   1   1   1
-----------------+------+----------------+--------------------------+----------------
x5x   .   .      |   10 |    5    5    0 | 1440    *    *    *    * |   1   1   0   0
x .   .   x      |    4 |    2    0    2 |    * 3600    *    *    * |   0   1   1   0
. x3/2o   .      |    3 |    0    3    0 |    *    * 2400    *    * |   1   0   0   1
. x   .   x5/3*b |   10 |    0    5    5 |    *    *    * 1440    * |   0   1   0   1
. .   o5/3x      |    5 |    0    0    5 |    *    *    *    * 1440 |   0   0   1   1
-----------------+------+----------------+--------------------------+----------------
x5x3/2o   .      ♦   60 |   30   60    0 |   12    0   20    0    0 | 120   *   *   *
x5x   .   x5/3*b ♦  120 |   60   60   60 |   12   30    0   12    0 |   * 120   *   *
x .   o5/3x      ♦   10 |    5    0   10 |    0    5    0    0    2 |   *   * 720   *
. x3/2o5/3x5/3*b ♦   60 |    0   60   60 |    0    0   20   12   12 |   *   *   * 120
```