Acronym gid thipady
Name great ditrigonal hecatonicosiprismatodishecatonicosachoron
Circumradius sqrt[10+3 sqrt(5)] = 4.087567
Colonel of regiment (is itself locally convex – uniform polychoral members:
by cells: gidditdid giid grid pip quitdid tid
gid thipady 12000720120120
ghipady 01201207200120
& others)
External
links
hedrondude   WikiChoron  

As abstract polytope gid thipady is isomorphic to sid thipady, thereby replacing pentagons by pentagrams and interchanging decagrams and decagons, respectively replacing tid by quit gissid, pip by stip, and gidditdid by sidditdid.

Likewise it is isomorphic to mipthi, thereby replacing pentagons by pentagrams, respectively pip by stip and gidditdid by saddid.

Further it is isomorphic to gapthi, thereby interchanging decagrams and decagons only, respectively replacing tid by quit gissid, gidditdid by gaddid.


Incidence matrix according to Dynkin symbol

x5x3o5x5/3*b

. . . .      | 7200 |    1    2    2 |    2    2    1    2    1 |   1   2   1   1
-------------+------+----------------+--------------------------+----------------
x . . .      |    2 | 3600    *    * |    2    2    0    0    0 |   1   2   1   0
. x . .      |    2 |    * 7200    * |    1    0    1    1    0 |   1   1   0   1
. . . x      |    2 |    *    * 7200 |    0    1    0    1    1 |   0   1   1   1
-------------+------+----------------+--------------------------+----------------
x5x . .      |   10 |    5    5    0 | 1440    *    *    *    * |   1   1   0   0
x . . x      |    4 |    2    0    2 |    * 3600    *    *    * |   0   1   1   0
. x3o .      |    3 |    0    3    0 |    *    * 2400    *    * |   1   0   0   1
. x . x5/3*b |   10 |    0    5    5 |    *    *    * 1440    * |   0   1   0   1
. . o5x      |    5 |    0    0    5 |    *    *    *    * 1440 |   0   0   1   1
-------------+------+----------------+--------------------------+----------------
x5x3o .         60 |   30   60    0 |   12    0   20    0    0 | 120   *   *   *
x5x . x5/3*b   120 |   60   60   60 |   12   30    0   12    0 |   * 120   *   *
x . o5x         10 |    5    0   10 |    0    5    0    0    2 |   *   * 720   *
. x3o5x5/3*b    60 |    0   60   60 |    0    0   20   12   12 |   *   *   * 120

x5x3/2o5/4x5/3*b

. .   .   .      | 7200 |    1    2    2 |    2    2    1    2    1 |   1   2   1   1
-----------------+------+----------------+--------------------------+----------------
x .   .   .      |    2 | 3600    *    * |    2    2    0    0    0 |   1   2   1   0
. x   .   .      |    2 |    * 7200    * |    1    0    1    1    0 |   1   1   0   1
. .   .   x      |    2 |    *    * 7200 |    0    1    0    1    1 |   0   1   1   1
-----------------+------+----------------+--------------------------+----------------
x5x   .   .      |   10 |    5    5    0 | 1440    *    *    *    * |   1   1   0   0
x .   .   x      |    4 |    2    0    2 |    * 3600    *    *    * |   0   1   1   0
. x3/2o   .      |    3 |    0    3    0 |    *    * 2400    *    * |   1   0   0   1
. x   .   x5/3*b |   10 |    0    5    5 |    *    *    * 1440    * |   0   1   0   1
. .   o5/4x      |    5 |    0    0    5 |    *    *    *    * 1440 |   0   0   1   1
-----------------+------+----------------+--------------------------+----------------
x5x3/2o   .         60 |   30   60    0 |   12    0   20    0    0 | 120   *   *   *
x5x   .   x5/3*b   120 |   60   60   60 |   12   30    0   12    0 |   * 120   *   *
x .   o5/4x         10 |    5    0   10 |    0    5    0    0    2 |   *   * 720   *
. x3/2o5/4x5/3*b    60 |    0   60   60 |    0    0   20   12   12 |   *   *   * 120

© 2004-2019
top of page