Name great ditrigonary hecatonicosiprismatodishecatonicosachoron
Colonel of regiment (is itself locally convex – uniform polychoral members:
 by cells: gidditdid giid grid pip quitdid tid gid thipady 120 0 0 720 120 120 ghipady 0 120 120 720 0 120
& others)
External

As abstract polytope gid thipady is isomorphic to sid thipady, thereby replacing pentagons by pentagrams and interchanging decagrams and decagons, respectively replacing tid by quit gissid, pip by stip, and gidditdid by sidditdid.

Likewise it is isomorphic to mipthi, thereby replacing pentagons by pentagrams, respectively pip by stip and gidditdid by saddid.

Further it is isomorphic to gapthi, thereby interchanging decagrams and decagons only, respectively replacing tid by quit gissid, gidditdid by gaddid.

Incidence matrix according to Dynkin symbol

```x5x3o5x5/3*b

. . . .      | 7200 |    1    2    2 |    2    2    1    2    1 |   1   2   1   1
-------------+------+----------------+--------------------------+----------------
x . . .      |    2 | 3600    *    * |    2    2    0    0    0 |   1   2   1   0
. x . .      |    2 |    * 7200    * |    1    0    1    1    0 |   1   1   0   1
. . . x      |    2 |    *    * 7200 |    0    1    0    1    1 |   0   1   1   1
-------------+------+----------------+--------------------------+----------------
x5x . .      |   10 |    5    5    0 | 1440    *    *    *    * |   1   1   0   0
x . . x      |    4 |    2    0    2 |    * 3600    *    *    * |   0   1   1   0
. x3o .      |    3 |    0    3    0 |    *    * 2400    *    * |   1   0   0   1
. x . x5/3*b |   10 |    0    5    5 |    *    *    * 1440    * |   0   1   0   1
. . o5x      |    5 |    0    0    5 |    *    *    *    * 1440 |   0   0   1   1
-------------+------+----------------+--------------------------+----------------
x5x3o .      ♦   60 |   30   60    0 |   12    0   20    0    0 | 120   *   *   *
x5x . x5/3*b ♦  120 |   60   60   60 |   12   30    0   12    0 |   * 120   *   *
x . o5x      ♦   10 |    5    0   10 |    0    5    0    0    2 |   *   * 720   *
. x3o5x5/3*b ♦   60 |    0   60   60 |    0    0   20   12   12 |   *   *   * 120
```

```x5x3/2o5/4x5/3*b

. .   .   .      | 7200 |    1    2    2 |    2    2    1    2    1 |   1   2   1   1
-----------------+------+----------------+--------------------------+----------------
x .   .   .      |    2 | 3600    *    * |    2    2    0    0    0 |   1   2   1   0
. x   .   .      |    2 |    * 7200    * |    1    0    1    1    0 |   1   1   0   1
. .   .   x      |    2 |    *    * 7200 |    0    1    0    1    1 |   0   1   1   1
-----------------+------+----------------+--------------------------+----------------
x5x   .   .      |   10 |    5    5    0 | 1440    *    *    *    * |   1   1   0   0
x .   .   x      |    4 |    2    0    2 |    * 3600    *    *    * |   0   1   1   0
. x3/2o   .      |    3 |    0    3    0 |    *    * 2400    *    * |   1   0   0   1
. x   .   x5/3*b |   10 |    0    5    5 |    *    *    * 1440    * |   0   1   0   1
. .   o5/4x      |    5 |    0    0    5 |    *    *    *    * 1440 |   0   0   1   1
-----------------+------+----------------+--------------------------+----------------
x5x3/2o   .      ♦   60 |   30   60    0 |   12    0   20    0    0 | 120   *   *   *
x5x   .   x5/3*b ♦  120 |   60   60   60 |   12   30    0   12    0 |   * 120   *   *
x .   o5/4x      ♦   10 |    5    0   10 |    0    5    0    0    2 |   *   * 720   *
. x3/2o5/4x5/3*b ♦   60 |    0   60   60 |    0    0   20   12   12 |   *   *   * 120
```