Acronym hatid
Name hexagon - truncated-dodecahedron duoprism
Circumradius sqrt[(45+15 sqrt(5))/8] = 3.133309
Face vector 360, 900, 792, 288, 38
Confer
more general:
n,tid-dip  
general polytopal classes:
Wythoffian polytera  
External
links
polytopewiki  

Incidence matrix according to Dynkin symbol

x6o o3x5x

. . . . . | 360 |   2   2   1 |  1   4   2   1  2 |  2  1   2  4 1 |  1  2 2
----------+-----+-------------+-------------------+----------------+--------
x . . . . |   2 | 360   *   * |  1   2   1   0  0 |  2  1   1  2 0 |  1  2 1
. . . x . |   2 |   * 360   * |  0   2   0   1  1 |  1  0   2  2 1 |  1  1 2
. . . . x |   2 |   *   * 180 |  0   0   2   0  2 |  0  1   0  4 1 |  0  2 2
----------+-----+-------------+-------------------+----------------+--------
x6o . . . |   6 |   6   0   0 | 60   *   *   *  * |  2  1   0  0 0 |  1  2 0
x . . x . |   4 |   2   2   0 |  * 360   *   *  * |  1  0   1  1 0 |  1  1 1
x . . . x |   4 |   2   0   2 |  *   * 180   *  * |  0  1   0  2 0 |  0  2 1
. . o3x . |   3 |   0   3   0 |  *   *   * 120  * |  0  0   2  0 1 |  1  0 2
. . . x5x |  10 |   0   5   5 |  *   *   *   * 72 |  0  0   0  2 1 |  0  1 2
----------+-----+-------------+-------------------+----------------+--------
x6o . x .   12 |  12   6   0 |  2   6   0   0  0 | 60  *   *  * * |  1  1 0
x6o . . x   12 |  12   0   6 |  2   0   6   0  0 |  * 30   *  * * |  0  2 0
x . o3x .    6 |   3   6   0 |  0   3   0   2  0 |  *  * 120  * * |  1  0 1
x . . x5x   20 |  10  10  10 |  0   5   5   0  2 |  *  *   * 72 * |  0  1 1
. . o3x5x   60 |   0  60  30 |  0   0   0  20 12 |  *  *   *  * 6 |  0  0 2
----------+-----+-------------+-------------------+----------------+--------
x6o o3x .   18 |  18  18   0 |  3  18   0   6  0 |  3  0   6  0 0 | 20  * *
x6o . x5x   60 |  60  30  30 | 10  30  30   0  6 |  5  5   0  6 0 |  * 12 *
x . o3x5x  120 |  60 120  60 |  0  60  30  40 24 |  0  0  20 12 2 |  *  * 6

x3x o3x5x

. . . . . | 360 |   1   1   2   1 |  1   2  1   2  1   1  2 |  2  1  1  2  1  2 1 |  1  2 1 1
----------+-----+-----------------+-------------------------+---------------------+----------
x . . . . |   2 | 180   *   *   * |  1   2  1   0  0   0  0 |  2  1  1  2  0  0 0 |  1  2 1 0
. x . . . |   2 |   * 180   *   * |  1   0  0   2  1   0  0 |  2  1  0  0  1  2 0 |  1  2 0 1
. . . x . |   2 |   *   * 360   * |  0   1  0   1  0   1  1 |  1  0  1  1  1  1 1 |  1  1 1 1
. . . . x |   2 |   *   *   * 180 |  0   0  1   0  1   0  2 |  0  1  0  2  0  2 1 |  0  2 1 1
----------+-----+-----------------+-------------------------+---------------------+----------
x3x . . . |   6 |   3   3   0   0 | 60   *  *   *  *   *  * |  2  1  0  0  0  0 0 |  1  2 0 0
x . . x . |   4 |   2   0   2   0 |  * 180  *   *  *   *  * |  1  0  1  1  0  0 0 |  1  1 1 0
x . . . x |   4 |   2   0   0   2 |  *   * 90   *  *   *  * |  0  1  0  2  0  0 0 |  0  2 1 0
. x . x . |   4 |   0   2   2   0 |  *   *  * 180  *   *  * |  1  0  0  0  1  1 0 |  1  1 0 1
. x . . x |   4 |   0   2   0   2 |  *   *  *   * 90   *  * |  0  1  0  0  0  2 0 |  0  2 0 1
. . o3x . |   3 |   0   0   3   0 |  *   *  *   *  * 120  * |  0  0  1  0  1  0 1 |  1  0 1 1
. . . x5x |  10 |   0   0   5   5 |  *   *  *   *  *   * 72 |  0  0  0  1  0  1 1 |  0  1 1 1
----------+-----+-----------------+-------------------------+---------------------+----------
x3x . x .   12 |   6   6   6   0 |  2   3  0   3  0   0  0 | 60  *  *  *  *  * * |  1  1 0 0
x3x . . x   12 |   6   6   0   6 |  2   0  3   0  3   0  0 |  * 30  *  *  *  * * |  0  2 0 0
x . o3x .    6 |   3   0   6   0 |  0   3  0   0  0   2  0 |  *  * 60  *  *  * * |  1  0 1 0
x . . x5x   20 |  10   0  10  10 |  0   5  5   0  0   0  2 |  *  *  * 36  *  * * |  0  1 1 0
. x o3x .    6 |   0   3   6   0 |  0   0  0   3  0   2  0 |  *  *  *  * 60  * * |  1  0 0 1
. x . x5x   20 |   0  10  10  10 |  0   0  0   5  5   0  2 |  *  *  *  *  * 36 * |  0  1 0 1
. . o3x5x   60 |   0   0  60  30 |  0   0  0   0  0  20 12 |  *  *  *  *  *  * 6 |  0  0 1 1
----------+-----+-----------------+-------------------------+---------------------+----------
x3x o3x .   18 |   9   9  18   0 |  3   9  0   9  0   6  0 |  3  0  3  0  3  0 0 | 20  * * *
x3x . x5x   60 |  30  30  30  30 | 10  15 15  15 15   0  6 |  5  5  0  3  0  3 0 |  * 12 * *
x . o3x5x  120 |  60   0 120  60 |  0  60 30   0  0  40 24 |  0  0 20 12  0  0 2 |  *  * 3 *
. x o3x5x  120 |   0  60 120  60 |  0   0  0  60 30  40 24 |  0  0  0  0 20 12 2 |  *  * * 3

© 2004-2024
top of page