Acronym hasirco (old: hissirco)
Name hexagon small-rhombicuboctahedron duoprism
Circumradius sqrt[9+2 sqrt(2)]/2 = 1.719624
Confer n,sirco-dip  

Incidence matrix according to Dynkin symbol

x6o x3o4x

. . . . . | 144 |   2   2   2 |  1   4   4  1  2  1 |  2  2  2  4  2 1 | 1  2 1 2
----------+-----+-------------+---------------------+------------------+---------
x . . . . |   2 | 144   *   * |  1   2   2  0  0  0 |  2  2  1  2  1 0 | 1  2 1 1
. . x . . |   2 |   * 144   * |  0   2   0  1  1  0 |  1  0  2  2  0 1 | 1  1 0 2
. . . . x |   2 |   *   * 144 |  0   0   2  0  1  1 |  0  1  0  2  2 1 | 0  1 1 2
----------+-----+-------------+---------------------+------------------+---------
x6o . . . |   6 |   6   0   0 | 24   *   *  *  *  * |  2  2  0  0  0 0 | 1  2 1 0
x . x . . |   4 |   2   2   0 |  * 144   *  *  *  * |  1  0  1  1  0 0 | 1  1 0 1
x . . . x |   4 |   2   0   2 |  *   * 144  *  *  * |  0  1  0  1  1 0 | 0  1 1 1
. . x3o . |   3 |   0   3   0 |  *   *   * 48  *  * |  0  0  2  0  0 1 | 1  0 0 2
. . x . x |   4 |   0   2   2 |  *   *   *  * 72  * |  0  0  0  2  0 1 | 0  1 0 2
. . . o4x |   4 |   0   0   4 |  *   *   *  *  * 36 |  0  0  0  0  2 1 | 0  0 1 2
----------+-----+-------------+---------------------+------------------+---------
x6o x . .   12 |  12   6   0 |  2   6   0  0  0  0 | 24  *  *  *  * * | 1  1 0 0
x6o . . x   12 |  12   0   6 |  2   0   6  0  0  0 |  * 24  *  *  * * | 0  1 1 0
x . x3o .    6 |   3   6   0 |  0   3   0  2  0  0 |  *  * 48  *  * * | 1  0 0 1
x . x . x    8 |   4   4   4 |  0   2   2  0  2  0 |  *  *  * 72  * * | 0  1 0 1
x . . o4x    8 |   4   0   8 |  0   0   4  0  0  2 |  *  *  *  * 36 * | 0  0 1 1
. . x3o4x   24 |   0  24  24 |  0   0   0  8 12  6 |  *  *  *  *  * 6 | 0  0 0 2
----------+-----+-------------+---------------------+------------------+---------
x6o x3o .   18 |  18  18   0 |  3  18   0  6  0  0 |  3  0  6  0  0 0 | 8  * * *
x6o x . x   24 |  24  12  12 |  4  12  12  0  6  0 |  2  2  0  6  0 0 | * 12 * *
x6o . o4x   24 |  24   0  24 |  4   0  24  0  0  6 |  0  4  0  0  6 0 | *  * 6 *
x . x3o4x   48 |  24  48  48 |  0  24  24 16 24 12 |  0  0  8 12  6 2 | *  * * 6

x3x x3o4x

. . . . . | 144 |  1  1   2   2 |  1  2  2  2  2  1  2  1 |  2  2  1  2  2  1  2  1 1 | 1  2 1 1 1
----------+-----+---------------+-------------------------+---------------------------+-----------
x . . . . |   2 | 72  *   *   * |  1  2  2  0  0  0  0  0 |  2  2  1  2  1  0  0  0 0 | 1  2 1 1 0
. x . . . |   2 |  * 72   *   * |  1  0  0  2  2  0  0  0 |  2  2  0  0  0  1  2  1 0 | 1  2 1 0 1
. . x . . |   2 |  *  * 144   * |  0  1  0  1  0  1  1  0 |  1  0  1  1  0  1  1  0 1 | 1  1 0 1 1
. . . . x |   2 |  *  *   * 144 |  0  0  1  0  1  0  1  1 |  0  1  0  1  1  0  1  1 1 | 0  1 1 1 1
----------+-----+---------------+-------------------------+---------------------------+-----------
x3x . . . |   6 |  3  3   0   0 | 24  *  *  *  *  *  *  * |  2  2  0  0  0  0  0  0 0 | 1  2 1 0 0
x . x . . |   4 |  2  0   2   0 |  * 72  *  *  *  *  *  * |  1  0  1  1  0  0  0  0 0 | 1  1 0 1 0
x . . . x |   4 |  2  0   0   2 |  *  * 72  *  *  *  *  * |  0  1  0  1  1  0  0  0 0 | 0  1 1 1 0
. x x . . |   4 |  0  2   2   0 |  *  *  * 72  *  *  *  * |  1  0  0  0  0  1  1  0 0 | 1  1 0 0 1
. x . . x |   4 |  0  2   0   2 |  *  *  *  * 72  *  *  * |  0  1  0  0  0  0  1  1 0 | 0  1 1 0 1
. . x3o . |   3 |  0  0   3   0 |  *  *  *  *  * 48  *  * |  0  0  1  0  0  1  0  0 1 | 1  0 0 1 1
. . x . x |   4 |  0  0   2   2 |  *  *  *  *  *  * 72  * |  0  0  0  1  0  0  1  0 1 | 0  1 0 1 1
. . . o4x |   4 |  0  0   0   4 |  *  *  *  *  *  *  * 36 |  0  0  0  0  1  0  0  1 1 | 0  0 1 1 1
----------+-----+---------------+-------------------------+---------------------------+-----------
x3x x . .   12 |  6  6   6   0 |  2  3  0  3  0  0  0  0 | 24  *  *  *  *  *  *  * * | 1  1 0 0 0
x3x . . x   12 |  6  6   0   6 |  2  0  3  0  3  0  0  0 |  * 24  *  *  *  *  *  * * | 0  1 1 0 0
x . x3o .    6 |  3  0   6   0 |  0  3  0  0  0  2  0  0 |  *  * 24  *  *  *  *  * * | 1  0 0 1 0
x . x . x    8 |  4  0   4   4 |  0  2  2  0  0  0  2  0 |  *  *  * 36  *  *  *  * * | 0  1 0 1 0
x . . o4x    8 |  4  0   0   8 |  0  0  4  0  0  0  0  2 |  *  *  *  * 18  *  *  * * | 0  0 1 1 0
. x x3o .    6 |  0  3   6   0 |  0  0  0  3  0  2  0  0 |  *  *  *  *  * 24  *  * * | 1  0 0 0 1
. x x . x    8 |  0  4   4   4 |  0  0  0  2  2  0  2  0 |  *  *  *  *  *  * 36  * * | 0  1 0 0 1
. x . o4x    8 |  0  4   0   8 |  0  0  0  0  4  0  0  2 |  *  *  *  *  *  *  * 18 * | 0  0 1 0 1
. . x3o4x   24 |  0  0  24  24 |  0  0  0  0  0  8 12  6 |  *  *  *  *  *  *  *  * 6 | 0  0 0 1 1
----------+-----+---------------+-------------------------+---------------------------+-----------
x3x x3o .   18 |  9  9  18   0 |  3  9  0  9  0  6  0  0 |  3  0  3  0  0  3  0  0 0 | 8  * * * *
x3x x . x   24 | 12 12  12  12 |  4  6  6  6  6  0  6  0 |  2  2  0  3  0  0  3  0 0 | * 12 * * *
x3x . o4x   24 | 12 12   0  24 |  4  0 12  0 12  0  0  6 |  0  4  0  0  3  0  0  3 0 | *  * 6 * *
x . x3o4x   48 | 24  0  48  48 |  0 24 24  0  0 16 24 12 |  0  0  8 12  6  0  0  0 2 | *  * * 3 *
. x x3o4x   48 |  0 24  48  48 |  0  0  0 24 24 16 24 12 |  0  0  0  0  0  8 12  6 2 | *  * * * 3

© 2004-2019
top of page