Acronym | happip, K-4.53 |
Name | hexagonal-antiprism prism |
Circumradius | sqrt[4+sqrt(3)]/2 = 1.197085 |
Lace city in approx. ASCII-art |
x6o x6o -- x x6o (hip) o6x o6x -- x o6x (gyro hip) | | | +-- s2s6s (hap) +-------- s2s6s (hap) |
Face vector | 24, 60, 52, 16 |
Confer |
|
External links |
Incidence matrix according to Dynkin symbol
x s2s6s . demi( . . . ) | 24 | 1 1 1 2 | 1 1 2 1 3 | 1 3 1 ----------------+----+-------------+-------------+------- x demi( . . . ) | 2 | 12 * * * | 1 1 2 0 0 | 1 3 0 . s2s . | 2 | * 12 * * | 1 0 0 0 2 | 0 2 1 . s 2 s | 2 | * * 12 * | 0 1 0 0 2 | 0 2 1 . sefa( . s6s ) | 2 | * * * 24 | 0 0 1 1 1 | 1 1 1 ----------------+----+-------------+-------------+------- x s2s . | 4 | 2 2 0 0 | 6 * * * * | 0 2 0 x s 2 s | 4 | 2 0 2 0 | * 6 * * * | 0 2 0 x sefa( . s6s ) | 4 | 2 0 0 2 | * * 12 * * | 1 1 0 . . s6s ♦ 6 | 0 0 0 6 | * * * 4 * | 1 0 1 . sefa( s2s6s ) | 3 | 0 1 1 1 | * * * * 24 | 0 1 1 ----------------+----+-------------+-------------+------- x . s6s ♦ 12 | 6 0 0 12 | 0 0 6 2 0 | 2 * * x sefa( s2s6s ) ♦ 6 | 3 2 2 2 | 1 1 1 0 2 | * 12 * . s2s6s ♦ 12 | 0 6 6 12 | 0 0 0 2 12 | * * 2
x s2s12o . demi( . . . ) | 24 | 1 2 2 | 2 2 1 3 | 1 3 1 -----------------+----+----------+------------+------- x demi( . . . ) | 2 | 12 * * | 2 2 0 0 | 1 3 0 . s2s . | 2 | * 24 * | 1 0 0 2 | 0 2 1 . sefa( . s12o ) | 2 | * * 24 | 0 1 1 1 | 1 1 1 -----------------+----+----------+------------+------- x s2s . | 4 | 2 2 0 | 12 * * * | 0 2 0 x sefa( . s12o ) | 4 | 2 0 2 | * 12 * * | 1 1 0 . . s12o ♦ 6 | 0 0 6 | * * 4 * | 1 0 1 . sefa( s2s12o ) | 3 | 0 2 1 | * * * 24 | 0 1 1 -----------------+----+----------+------------+------- x . s12o ♦ 12 | 6 0 12 | 0 6 2 0 | 2 * * x sefa( s2s12o ) ♦ 6 | 3 4 2 | 2 1 0 2 | * 12 * . s2s12o ♦ 12 | 0 12 12 | 0 0 2 12 | * * 2
xx xo6ox&#x → height = sqrt[sqrt(3)-1] = 0.855600
(hip || gyro hip)
o. o.6o. | 12 * | 1 2 2 0 0 | 2 1 2 2 1 0 0 | 1 2 1 1 0
.o .o6.o | * 12 | 0 0 2 1 2 | 0 0 2 1 2 2 1 | 0 1 2 1 1
------------+-------+--------------+------------------+----------
x. .. .. | 2 0 | 6 * * * * | 2 0 2 0 0 0 0 | 1 2 1 0 0
.. x. .. | 2 0 | * 12 * * * | 1 1 0 1 0 0 0 | 1 1 0 1 0
oo oo6oo&#x | 1 1 | * * 24 * * | 0 0 1 1 1 0 0 | 0 1 1 1 0
.x .. .. | 0 2 | * * * 6 * | 0 0 2 0 0 2 0 | 0 1 2 0 1
.. .x .. | 0 2 | * * * * 12 | 0 0 0 0 1 1 1 | 0 0 1 1 1
------------+-------+--------------+------------------+----------
x. x. .. | 4 0 | 2 2 0 0 0 | 6 * * * * * * | 1 1 0 0 0
.. x.6o. | 6 0 | 0 6 0 0 0 | * 2 * * * * * | 1 0 0 1 0
xx .. ..&#x | 2 2 | 1 0 2 1 0 | * * 12 * * * * | 0 1 1 0 0
.. xo ..&#x | 2 1 | 0 1 2 0 0 | * * * 12 * * * | 0 1 0 1 0
.. .. ox&#x | 1 2 | 0 0 2 0 1 | * * * * 12 * * | 0 0 1 1 0
.x .. .x | 0 4 | 0 0 0 2 2 | * * * * * 6 * | 0 0 1 0 1
.. .o6.x | 0 6 | 0 0 0 0 6 | * * * * * * 2 | 0 0 0 1 1
------------+-------+--------------+------------------+----------
x. x.6o. ♦ 12 0 | 6 12 0 0 0 | 6 2 0 0 0 0 0 | 1 * * * *
xx xo ..&#x ♦ 4 2 | 2 2 4 1 0 | 1 0 2 2 0 0 0 | * 6 * * *
xx .. ox&#x ♦ 2 4 | 1 0 4 2 2 | 0 0 2 0 2 1 0 | * * 6 * *
.. xo6ox&#x ♦ 6 6 | 0 6 12 0 6 | 0 1 0 6 6 0 1 | * * * 2 *
.x .o6.x ♦ 0 12 | 0 0 0 6 12 | 0 0 0 0 0 6 2 | * * * * 1
s2s6s || s2s6s → height = 1 (hap || hap) demi( . . . ) | 12 * | 1 1 2 1 0 0 0 | 1 3 1 1 2 0 0 | 1 1 3 0 demi( . . . ) | * 12 | 0 0 0 1 1 1 2 | 0 0 1 1 2 1 3 | 0 1 3 1 ------------------------------+-------+------------------+------------------+--------- s2s . | 2 0 | 6 * * * * * * | 0 2 1 0 0 0 0 | 1 0 1 0 s 2 s | 2 0 | * 6 * * * * * | 0 2 0 1 0 0 0 | 1 0 1 0 sefa( . s6s ) | 2 0 | * * 12 * * * * | 1 1 0 0 1 0 0 | 1 1 1 0 demi( . . . ) || demi( . . . ) | 1 1 | * * * 12 * * * | 0 0 1 1 2 0 0 | 0 1 3 0 s2s . | 0 2 | * * * * 6 * * | 0 0 1 0 0 0 2 | 0 0 2 1 s 2 s | 0 2 | * * * * * 6 * | 0 0 0 1 0 0 2 | 0 0 2 1 sefa( . s6s ) | 0 2 | * * * * * * 12 | 0 0 0 0 1 1 1 | 0 1 1 1 ------------------------------+-------+------------------+------------------+--------- . s6s ♦ 6 0 | 0 0 6 0 0 0 0 | 2 * * * * * * | 1 1 0 0 sefa( s2s6s ) | 3 0 | 1 1 1 0 0 0 0 | * 12 * * * * * | 1 0 1 0 s2s . || s2s . | 2 2 | 1 0 0 2 1 0 0 | * * 6 * * * * | 0 0 2 0 s 2 s || s 2 s | 2 2 | 0 1 0 2 0 1 0 | * * * 6 * * * | 0 0 2 0 sefa( . s6s ) || sefa( . s6s ) | 2 2 | 0 0 1 2 0 0 1 | * * * * 12 * * | 0 1 1 0 . s6s ♦ 0 6 | 0 0 0 0 0 0 6 | * * * * * 2 * | 0 1 0 1 sefa( s2s6s ) | 0 3 | 0 0 0 0 1 1 1 | * * * * * * 12 | 0 0 1 1 ------------------------------+-------+------------------+------------------+--------- s2s6s ♦ 12 0 | 6 6 12 0 0 0 0 | 2 12 0 0 0 0 0 | 1 * * * . s6s || . s6s ♦ 6 6 | 0 0 6 6 0 0 6 | 1 0 0 0 6 1 0 | * 2 * * sefa( s2s6s ) || sefa( s2s6s ) ♦ 3 3 | 1 1 1 3 1 1 1 | 0 1 1 1 1 0 1 | * * 12 * s2s6s ♦ 0 12 | 0 0 0 0 6 6 12 | 0 0 0 0 0 2 12 | * * * 1
s2s12o || s2s12o → height = 1 (hap || hap) demi( . . . ) | 12 * | 2 2 1 0 0 | 1 3 2 2 0 0 | 1 1 3 0 demi( . . . ) | * 12 | 0 0 1 2 2 | 0 0 2 2 1 3 | 0 1 3 1 --------------------------------+-------+----------------+-----------------+--------- s2s . | 2 0 | 12 * * * * | 0 2 1 0 0 0 | 1 0 2 0 sefa( . s12o ) | 2 0 | * 12 * * * | 1 1 0 1 0 0 | 1 1 1 0 demi( . . . ) || demi( . . . ) | 1 1 | * * 12 * * | 0 0 2 2 0 0 | 0 1 3 0 s2s . ) | 0 2 | * * * 12 * | 0 0 1 0 0 2 | 0 0 2 1 sefa( . s12o ) | 0 2 | * * * * 12 | 0 0 0 1 1 1 | 0 1 1 1 --------------------------------+-------+----------------+-----------------+--------- . s12o ♦ 6 0 | 0 6 0 0 0 | 2 * * * * * | 1 1 0 0 sefa( s2s12o ) | 3 0 | 2 1 0 0 0 | * 12 * * * * | 1 0 1 0 s2s . ) || s2s . ) | 2 2 | 1 0 2 1 0 | * * 12 * * * | 0 0 2 0 sefa( . s12o ) || sefa( . s12o ) | 2 2 | 0 1 2 0 1 | * * * 12 * * | 0 1 1 0 . s12o ♦ 0 6 | 0 0 0 0 6 | * * * * 2 * | 0 1 0 1 sefa( s2s12o ) | 0 3 | 0 0 0 2 1 | * * * * * 12 | 0 0 1 1 --------------------------------+-------+----------------+-----------------+--------- s2s12o ♦ 12 0 | 12 12 0 0 0 | 2 12 0 0 0 0 | 1 * * * . s12o || . s12o ♦ 6 6 | 0 6 6 0 6 | 1 0 0 6 1 0 | * 2 * * sefa( s2s12o ) || sefa( s2s12o ) ♦ 3 3 | 2 1 3 2 1 | 0 1 2 1 0 1 | * * 12 * s2s12o ♦ 0 12 | 0 0 0 12 12 | 0 0 0 0 2 12 | * * * 1
© 2004-2024 | top of page |