Acronym gippix Name great prismated hexateron,runcicantitruncated hexateron Field of sections ` ©` Circumradius sqrt(20/3) = 2.581989 Vertex figure ` ©   ©` Confer general polytopal classes: lace simplices Externallinks

Incidence matrix according to Dynkin symbol

```x3x3x3x3o

. . . . . | 360 |   1   1   1   2 |  1  1   2  1   2   2   1 |  1  2  2  1  2  1  1 | 2  1  1 1
----------+-----+-----------------+--------------------------+----------------------+----------
x . . . . |   2 | 180   *   *   * |  1  1   2  0   0   0   0 |  1  2  2  1  0  0  0 | 2  1  1 0
. x . . . |   2 |   * 180   *   * |  1  0   0  1   2   0   0 |  1  2  0  0  2  1  0 | 2  1  0 1
. . x . . |   2 |   *   * 180   * |  0  1   0  1   0   2   0 |  1  0  2  0  2  0  1 | 2  0  1 1
. . . x . |   2 |   *   *   * 360 |  0  0   1  0   1   1   1 |  0  1  1  1  1  1  1 | 1  1  1 1
----------+-----+-----------------+--------------------------+----------------------+----------
x3x . . . |   6 |   3   3   0   0 | 60  *   *  *   *   *   * |  1  2  0  0  0  0  0 | 2  1  0 0
x . x . . |   4 |   2   0   2   0 |  * 90   *  *   *   *   * |  1  0  2  0  0  0  0 | 2  0  1 0
x . . x . |   4 |   2   0   0   2 |  *  * 180  *   *   *   * |  0  1  1  1  0  0  0 | 1  1  1 0
. x3x . . |   6 |   0   3   3   0 |  *  *   * 60   *   *   * |  1  0  0  0  2  0  0 | 2  0  0 1
. x . x . |   4 |   0   2   0   2 |  *  *   *  * 180   *   * |  0  1  0  0  1  1  0 | 1  1  0 1
. . x3x . |   6 |   0   0   3   3 |  *  *   *  *   * 120   * |  0  0  1  0  1  0  1 | 1  0  1 1
. . . x3o |   3 |   0   0   0   3 |  *  *   *  *   *   * 120 |  0  0  0  1  0  1  1 | 0  1  1 1
----------+-----+-----------------+--------------------------+----------------------+----------
x3x3x . . ♦  24 |  12  12  12   0 |  4  6   0  4   0   0   0 | 15  *  *  *  *  *  * | 2  0  0 0
x3x . x . ♦  12 |   6   6   0   6 |  2  0   3  0   3   0   0 |  * 60  *  *  *  *  * | 1  1  0 0
x . x3x . ♦  12 |   6   0   6   6 |  0  3   3  0   0   2   0 |  *  * 60  *  *  *  * | 1  0  1 0
x . . x3o ♦   6 |   3   0   0   6 |  0  0   3  0   0   0   2 |  *  *  * 60  *  *  * | 0  1  1 0
. x3x3x . ♦  24 |   0  12  12  12 |  0  0   0  4   6   4   0 |  *  *  *  * 30  *  * | 1  0  0 1
. x . x3o ♦   6 |   0   3   0   6 |  0  0   0  0   3   0   2 |  *  *  *  *  * 60  * | 0  1  0 1
. . x3x3o ♦  12 |   0   0   6  12 |  0  0   0  0   0   4   4 |  *  *  *  *  *  * 30 | 0  0  1 1
----------+-----+-----------------+--------------------------+----------------------+----------
x3x3x3x . ♦ 120 |  60  60  60  60 | 20 30  30 20  30  20   0 |  5 10 10  0  5  0  0 | 6  *  * *
x3x . x3o ♦  18 |   9   9   0  18 |  3  0   9  0   9   0   6 |  0  3  0  3  0  3  0 | * 20 *  *
x . x3x3o ♦  24 |  12   0  12  24 |  0  6  12  0   0   8   8 |  0  0  4  4  0  0  2 | *  * 15 *
. x3x3x3o ♦  60 |   0  30  30  60 |  0  0   0 10  30  20  20 |  0  0  0  0  5 10  5 | *  *  * 6
```

```x3x3x3x3/2o

. . . .   . | 360 |   1   1   1   2 |  1  1   2  1   2   2   1 |  1  2  2  1  2  1  1 | 2  1  1 1
------------+-----+-----------------+--------------------------+----------------------+----------
x . . .   . |   2 | 180   *   *   * |  1  1   2  0   0   0   0 |  1  2  2  1  0  0  0 | 2  1  1 0
. x . .   . |   2 |   * 180   *   * |  1  0   0  1   2   0   0 |  1  2  0  0  2  1  0 | 2  1  0 1
. . x .   . |   2 |   *   * 180   * |  0  1   0  1   0   2   0 |  1  0  2  0  2  0  1 | 2  0  1 1
. . . x   . |   2 |   *   *   * 360 |  0  0   1  0   1   1   1 |  0  1  1  1  1  1  1 | 1  1  1 1
------------+-----+-----------------+--------------------------+----------------------+----------
x3x . .   . |   6 |   3   3   0   0 | 60  *   *  *   *   *   * |  1  2  0  0  0  0  0 | 2  1  0 0
x . x .   . |   4 |   2   0   2   0 |  * 90   *  *   *   *   * |  1  0  2  0  0  0  0 | 2  0  1 0
x . . x   . |   4 |   2   0   0   2 |  *  * 180  *   *   *   * |  0  1  1  1  0  0  0 | 1  1  1 0
. x3x .   . |   6 |   0   3   3   0 |  *  *   * 60   *   *   * |  1  0  0  0  2  0  0 | 2  0  0 1
. x . x   . |   4 |   0   2   0   2 |  *  *   *  * 180   *   * |  0  1  0  0  1  1  0 | 1  1  0 1
. . x3x   . |   6 |   0   0   3   3 |  *  *   *  *   * 120   * |  0  0  1  0  1  0  1 | 1  0  1 1
. . . x3/2o |   3 |   0   0   0   3 |  *  *   *  *   *   * 120 |  0  0  0  1  0  1  1 | 0  1  1 1
------------+-----+-----------------+--------------------------+----------------------+----------
x3x3x .   . ♦  24 |  12  12  12   0 |  4  6   0  4   0   0   0 | 15  *  *  *  *  *  * | 2  0  0 0
x3x . x   . ♦  12 |   6   6   0   6 |  2  0   3  0   3   0   0 |  * 60  *  *  *  *  * | 1  1  0 0
x . x3x   . ♦  12 |   6   0   6   6 |  0  3   3  0   0   2   0 |  *  * 60  *  *  *  * | 1  0  1 0
x . . x3/2o ♦   6 |   3   0   0   6 |  0  0   3  0   0   0   2 |  *  *  * 60  *  *  * | 0  1  1 0
. x3x3x   . ♦  24 |   0  12  12  12 |  0  0   0  4   6   4   0 |  *  *  *  * 30  *  * | 1  0  0 1
. x . x3/2o ♦   6 |   0   3   0   6 |  0  0   0  0   3   0   2 |  *  *  *  *  * 60  * | 0  1  0 1
. . x3x3/2o ♦  12 |   0   0   6  12 |  0  0   0  0   0   4   4 |  *  *  *  *  *  * 30 | 0  0  1 1
------------+-----+-----------------+--------------------------+----------------------+----------
x3x3x3x   . ♦ 120 |  60  60  60  60 | 20 30  30 20  30  20   0 |  5 10 10  0  5  0  0 | 6  *  * *
x3x . x3/2o ♦  18 |   9   9   0  18 |  3  0   9  0   9   0   6 |  0  3  0  3  0  3  0 | * 20 *  *
x . x3x3/2o ♦  24 |  12   0  12  24 |  0  6  12  0   0   8   8 |  0  0  4  4  0  0  2 | *  * 15 *
. x3x3x3/2o ♦  60 |   0  30  30  60 |  0  0   0 10  30  20  20 |  0  0  0  0  5 10  5 | *  *  * 6
```