Acronym capicot
Name celliprismated icositetrachoric tetracomb,
great prismatotetracontaoctachoric tetracomb,
steritruncated hexadecachoric tetracomb
Confer
general polytopal classes:
partial Stott expansions  
External
links
wikipedia   polytopewiki  

Incidence matrix according to Dynkin symbol

x3x3o4o3x   (N → ∞)

. . . . . | 144N |   1    4    4 |   4    4    4    8    4 |   4   8   4   1   4   4   1 |  1   4   4   1 1
----------+------+---------------+-------------------------+-----------------------------+-----------------
x . . . . |    2 | 72N    *    * |   4    4    0    0    0 |   4   8   4   0   0   0   0 |  1   4   4   1 0
. x . . . |    2 |   * 288N    * |   1    0    2    2    0 |   2   2   0   1   2   1   0 |  1   2   1   0 1
. . . . x |    2 |   *    * 288N |   0    1    0    2    2 |   0   2   2   0   1   2   1 |  0   1   2   1 1
----------+------+---------------+-------------------------+-----------------------------+-----------------
x3x . . . |    6 |   3    3    0 | 96N    *    *    *    * |   2   2   0   0   0   0   0 |  1   2   1   0 0
x . . . x |    4 |   2    0    2 |   * 144N    *    *    * |   0   2   2   0   0   0   0 |  0   1   2   1 0
. x3o . . |    3 |   0    3    0 |   *    * 192N    *    * |   1   0   0   1   1   0   0 |  1   1   0   0 1
. x . . x |    4 |   0    2    2 |   *    *    * 288N    * |   0   1   0   0   1   1   0 |  0   1   1   0 1
. . . o3x |    3 |   0    0    3 |   *    *    *    * 192N |   0   0   1   0   0   1   1 |  0   0   1   1 1
----------+------+---------------+-------------------------+-----------------------------+-----------------
x3x3o . .    12 |   6   12    0 |   4    0    4    0    0 | 48N   *   *   *   *   *   * |  1   1   0   0 0
x3x . . x    12 |   6    6    6 |   2    3    0    3    0 |   * 96N   *   *   *   *   * |  0   1   1   0 0
x . . o3x     6 |   3    0    6 |   0    3    0    0    2 |   *   * 96N   *   *   *   * |  0   0   1   1 0
. x3o4o .     6 |   0   12    0 |   0    0    8    0    0 |   *   *   * 24N   *   *   * |  1   0   0   0 1
. x3o . x     6 |   0    6    3 |   0    0    2    3    0 |   *   *   *   * 96N   *   * |  0   1   0   0 1
. x . o3x     6 |   0    3    6 |   0    0    0    3    2 |   *   *   *   *   * 96N   * |  0   0   1   0 1
. . o4o3x     6 |   0    0   12 |   0    0    0    0    8 |   *   *   *   *   *   * 24N |  0   0   0   1 1
----------+------+---------------+-------------------------+-----------------------------+-----------------
x3x3o4o .    48 |  24   96    0 |  32    0   64    0    0 |  16   0   0   8   0   0   0 | 3N   *   *   * *
x3x3o . x    24 |  12   24   12 |   8    6    8   12    0 |   2   4   0   0   4   0   0 |  * 24N   *   * *
x3x . o3x    18 |   9    9   18 |   3    9    0    9    6 |   0   3   3   0   0   3   0 |  *   * 32N   * *
x . o4o3x    12 |   6    0   24 |   0   12    0    0   16 |   0   0   8   0   0   0   2 |  *   *   * 12N *
. x3o4o3x   144 |   0  288  288 |   0    0  192  288  192 |   0   0   0  24  96  96  24 |  *   *   *   * N

© 2004-2025
top of page