Acronym azap
Name apeirogonal antiprism
 
 ©
Vertex figure [33,∞]
Confer
general polytopal classes:
n-ap   tiling  
External
links
wikipedia  

Although this looks just like a mere stripe of triangles, it still is a tiling of the complete plane: both seemingly empty half-planes may be considered filled by an inifinite-gon each.

It also is an extension of the general n-gonal antiprism, thereby becoming a flat tiling.


Incidence matrix according to Dynkin symbol

s2sNs   (N → ∞)

demi( . . .  ) | 2N | 1 1  2 | 1  3
---------------+----+--------+-----
      s2s .    |  2 | N *  * | 0  2
      s . s2*a |  2 | * N  * | 0  2
sefa( . sNs  ) |  2 | * * 2N | 1  1
---------------+----+--------+-----
      . sNs      N | 0 0  N | 2  *
sefa( s2sNs  ) |  3 | 1 1  1 | * 2N

starting figure: x xNx

s2s2No   (N → ∞)

demi( . .  . ) | 2N |  2  2 | 1  3
---------------+----+-------+-----
      s2s  .   |  2 | 2N  * | 0  2
sefa( . s2No ) |  2 |  * 2N | 1  1
---------------+----+-------+-----
      . s2No     N |  0  N | 2  *
sefa( s2s2No ) |  3 |  2  1 | * 2N

starting figure: x x2No

xoNox&#x     (N → ∞)   → height = sqrt(3)/2 = 0.866025
({N} || dual {N})

o.No.    | N * | 2  2 0 | 1 2 1 0
.oN.o    | * N | 0  2 2 | 0 1 2 1
---------+-----+--------+--------
x. ..    | 2 0 | N  * * | 1 1 0 0
ooNoo&#x | 1 1 | * 2N * | 0 1 1 0
.. .x    | 0 2 | *  * N | 0 0 1 1
---------+-----+--------+--------
x.No.     N 0 | N  0 0 | 1 * * *
xo ..&#x | 2 1 | 1  2 0 | * N * *
.. ox&#x | 1 2 | 0  2 1 | * * N *
.oN.x     0 N | 0  0 N | * * * 1

© 2004-2021
top of page