Acronym | n{4}2{3}2 |
Name | complex n-edged cube |
The incidence matrix of the real encasing polytope (n,n,n-tip) is
xno xno xno (n>2) . . . . . . | nnn | 3 | 3 12 | 12 8 | 3 12 | 6 ---------------+-----+------+---------+---------+--------+--- x . . . . . & | 2 | 3nnn | 1 4 | 6 4 | 2 8 | 5 ---------------+-----+------+---------+---------+--------+--- xno . . . . & | n | n | 3nn * | 4 0 | 2 4 | 4 x . x . . . & | 4 | 4 | * 3nn | 2 2 | 1 5 | 4 ---------------+-----+------+---------+---------+--------+--- xno x . . . & ♦ 2n | 3n | 2 n | 6nn * | 1 2 | 3 x . x . x . ♦ 8 | 12 | 0 6 | * nnn | 0 3 | 3 ---------------+-----+------+---------+---------+--------+--- xno xno . . & ♦ nn | 2nn | 2n nn | 2n 0 | 3n * | 2 xno x . x . & ♦ 4n | 8n | 4 5n | 4 n | * 3nn | 2 ---------------+-----+------+---------+---------+--------+--- xno xno x . & ♦ 2nn | 5nn | 4n 4nn | 6n nn | 2 2n | 3n
The incidence matrix of the complex polytope thus is
nnn | 3 | 3 verf = regular real triangle -----+-----+--- n | 3nn | 2 -----+-----+--- ♦ nn | 2n | 3n
Generators
with e = exp(2πi/n), E = exp(2πi k/n), where 1 < k < n and k not divisor of n / e 0 0 \ / 0 1 0 \ / 1 0 0 \ R0 = | 0 E 0 | , R1 = | 1 0 0 | , R2 = | 0 0 1 | \ 0 0 E / \ 0 0 1 / \ 0 1 0 / R0n = 1 (rotation-rotation*-rotation*) R12 = 1 (exchange 1 & 2) R22 = 1 (exchange 2 & 3) R0 * R1 * R0 * R1 = R1 * R0 * R1 * R0 (rot. → up → rot.* → down = up → rot.* → down → rot.) R0 * R2 = R2 * R0 R1 * R2 * R1 = R2 * R1 * R2 (exchange 1 & 3)
© 2004-2024 | top of page |