Acronym siddo Name snub disoctahedron,octahedral compound of 2 ike ` © ©` Circumradius sqrt[(5+sqrt(5))/8] = 0.951057 Inradius sqrt[(7+3 sqrt(5))/24] = 0.755761 Coordinates (τ/2, 1/2, 0)   & all permutations, all changes of sign where τ = (1+sqrt(5))/2 Vertex figure [35] General of army x3f4o Colonel of regiment (is itself locally convex) Externallinks

Faces of an octahedral subset of triangles pairwise fall into coincident face planes. So either those can be considered separately (type A); or they are considered as (rotated) 2-triangle-compounds (type B).

Incidence matrix according to Dynkin symbol

```β3β3β   (Type A)

both( . . . )    | 24 |  1  4 |  2  3 || 1
-----------------+----+-------+-------++--
both( s 2 s )    |  2 | 12  * |  0  2 || 1
sefa( β3β . )  & |  2 |  * 48 |  1  1 || 1
-----------------+----+-------+-------++--
both( s3s . )  & |  3 |  0  3 | 16  * || 1
sefa( β3β3β )    |  3 |  1  2 |  * 24 || 1
-----------------+----+-------+-------++--
both( s3s3s )    ♦ 12 |  6 24 |  8 12 || 2
```

```β3β3β   (Type B)

both( . . . )    | 24 |  1  4 | 2  3 || 1
-----------------+----+-------+------++--
both( s 2 s )    |  2 | 12  * | 0  2 || 1
sefa( β3β . )  & |  2 |  * 48 | 1  1 || 1
-----------------+----+-------+------++--
β3β .    & |  6 |  0  6 | 8  * || 2
sefa( β3β3β )    |  3 |  1  2 | * 24 || 1
-----------------+----+-------+------++--
both( s3s3s )    ♦ 12 |  6 24 | 8 12 || 2
```