Acronym ... Name x3β3β5β (?) Circumradius ...

No uniform realisation is possible.

Incidence matrix according to Dynkin symbol

```x3β3β5β

both( . . . . ) | 14400 |    1    1    1     2     2 |    1    1    1    2    2    2     3 |   1    1    1   1    3
----------------+-------+----------------------------+-------------------------------------+-----------------------
both( x . . . ) |     2 | 7200    *    *     *     * |    1    0    0    1    1    2     0 |   1    1    1   0    2
both( . s 2 s ) |     2 |    * 7200    *     *     * |    0    0    0    0    2    0     2 |   0    1    0   1    2
sefa( x3β . . ) |     2 |    *    * 7200     *     * |    1    0    0    1    1    0     0 |   1    1    0   0    1
sefa( . s3s . ) |     2 |    *    *    * 14400     * |    0    1    0    1    0    0     1 |   1    0    0   1    1
sefa( . . s5s ) |     2 |    *    *    *     * 14400 |    0    0    1    0    0    1     1 |   0    0    1   1    1
----------------+-------+----------------------------+-------------------------------------+-----------------------
x3β . .   ♦     6 |    3    0    3     0     0 | 2400    *    *    *    *    *     * |   1    1    0   0    0
both( . s3s . ) ♦     3 |    0    0    0     3     0 |    * 4800    *    *    *    *     * |   1    0    0   1    0
both( . . s5s ) ♦     5 |    0    0    0     0     5 |    *    * 2880    *    *    *     * |   0    0    1   1    0
sefa( x3β3β . ) |     4 |    1    0    1     2     0 |    *    *    * 7200    *    *     * |   1    0    0   0    1
sefa( x3β 2 β ) |     4 |    1    2    1     0     0 |    *    *    *    * 7200    *     * |   0    1    0   0    1
sefa( x 2 s5s ) |     4 |    2    0    0     0     2 |    *    *    *    *    * 7200     * |   0    0    1   0    1
sefa( . s3s5s ) |     3 |    0    1    0     1     1 |    *    *    *    *    *    * 14400 |   0    0    0   1    1
----------------+-------+----------------------------+-------------------------------------+-----------------------
x3β3β .   ♦    24 |   12    0   12    24     0 |    4    8    0   12    0    0     0 | 600    *    *   *    *
x3β 2 β   ♦    12 |    6    6    6     0     0 |    2    0    0    0    6    0     0 |   * 1200    *   *    *
both( x 2 s5s ) ♦    10 |    5    0    0     0    10 |    0    0    2    0    0    5     0 |   *    * 1440   *    *
both( . s3s5s ) ♦    60 |    0   30    0    60    60 |    0   20   12    0    0    0    60 |   *    *    * 240    *
sefa( x3β3β5β ) ♦     6 |    2    2    1     2     2 |    0    0    0    1    1    1     2 |   *    *    *   * 7200

starting figure: x3x3x5x
```