Acronym ... Name x3β3o3x (?) Circumradius ...

No uniform realisation is possible.

Incidence matrix according to Dynkin symbol

```x3β3o3x

both( . . . . ) | 60 |  1  2  2  2 |  2  1  2  1  2  2  2 |  1 1  2 1  2
----------------+----+-------------+----------------------+-------------
both( x . . . ) |  2 | 30  *  *  * |  2  0  2  0  0  0  0 |  1 1  2 0  0
both( . . . x ) |  2 |  * 60  *  * |  1  1  0  0  0  1  1 |  1 0  1 1  1
sefa( x3β . . ) |  2 |  *  * 60  * |  0  0  1  0  1  1  0 |  0 1  1 0  1
sefa( . β3o . ) |  2 |  *  *  * 60 |  0  0  0  1  1  0  1 |  0 1  0 1  1
----------------+----+-------------+----------------------+-------------
both( x . . x ) |  4 |  2  2  0  0 | 30  *  *  *  *  *  * |  1 0  1 0  0
both( . . o3x ) |  3 |  0  3  0  0 |  * 20  *  *  *  *  * |  1 0  0 1  0
x3β . .   ♦  6 |  3  0  3  0 |  *  * 20  *  *  *  * |  0 1  1 0  0
. β3o .   ♦  3 |  0  0  0  3 |  *  *  * 20  *  *  * |  0 1  0 1  0
sefa( x3β3o . ) |  4 |  0  0  2  2 |  *  *  *  * 30  *  * |  0 1  0 0  1
sefa( x3β . x ) |  4 |  0  2  2  0 |  *  *  *  *  * 30  * |  0 0  1 0  1
sefa( . β3o3x ) |  6 |  0  3  0  3 |  *  *  *  *  *  * 20 |  0 0  0 1  1
----------------+----+-------------+----------------------+-------------
both( x . o3x ) ♦  6 |  3  6  0  0 |  3  2  0  0  0  0  0 | 10 *  * *  *
x3β3o .   ♦ 12 |  6  0 12 12 |  0  0  4  4  6  0  0 |  * 5  * *  *
x3β . x   ♦ 12 |  6  6  6  0 |  3  0  2  0  0  3  0 |  * * 10 *  *
. β3o3x   ♦ 12 |  0 12  0 12 |  0  4  0  4  0  0  4 |  * *  * 5  *
sefa( x3β3o3x ) ♦ 12 |  0  6  6  6 |  0  0  0  0  3  3  2 |  * *  * * 10

starting figure: x3x3o3x
```