Acronym tabatch
Name truncated bitruncated-cubic-honeycomb
Confer
extremal cases:
batch   rebatch  
general polytopal classes:
isogonal  

Truncation would result in 3 different edge sizes in the outcome isohedral polychoron. That one here is scaled such so that the shorter specified one becomes unity. Then the larger specified edge will have size b=sqrt(3/2). The third one would be the arbitrary expansion size y (wrt. the rectified extremum, i.e. corresponding to the arbitrary truncation depth). In fact, for y=0 this results again in rebatch, while y → ∞ results again in the pre-image batch (rescaled back down accordingly).


Incidence matrix according to Dynkin symbol

((xo4ya3ay4ox))&#zb   (N → ∞)   → height = 0,
                                  y > 0 (arbitrary expansion size),
                                  a = y + 3/sqrt(2) (pseudo),
                                  b = sqrt(3/2) = 1.224745
(b-laced tegum sum of 2 inverted (x,y,a)-grichs)

  o.4o.3o.4o.       & | 24N |   1   1   2 |  1   3  2 | 3  1
----------------------+-----+-------------+-----------+-----
  x. .. .. ..       & |   2 | 12N   *   * |  1   2  0 | 2  1  x
  .. y. .. ..       & |   2 |   * 12N   * |  1   0  2 | 3  0  y
  oo4oo3oo4oo  &#b    |   2 |   *   * 24N |  0   2  1 | 2  1  b
----------------------+-----+-------------+-----------+-----
  x.4y. .. ..       & |   8 |   4   4   0 | 3N   *  * | 2  0  ditetragon x4y
  xo .. .. ..  &#b  & |   3 |   1   0   2 |  * 24N  * | 1  1  isot ox&#b
((.. ya3ay ..))&#zb   |  12 |   0   6   6 |  *   * 4N | 2  0  dihexagon y6b
----------------------+-----+-------------+-----------+-----
((xo4ya3ay ..))&#zb & |  72 |  24  36  48 |  6  24  8 | N  *  dittoe
  xo .. .. ox  &#b    |   4 |   2   0   4 |  0   4  0 | * 6N  (x,b)-disphenoid

© 2004-2026
top of page