Acronym tribbit Name triangular duoprismatic tetracomb,Delone complex of bihexagonal lattice A2×A2 Confer general polytopal classes: noble polytopes

Incidence matrix according to Dynkin symbol

```x3o6o x3o6o   (N → ∞)

. . . . . . | N |  6  6 |  6 36  6 | 36 36 | 36
------------+---+-------+----------+-------+---
x . . . . . | 2 | 3N  * |  2  6  0 | 12  6 | 12
. . . x . . | 2 |  * 3N |  0  6  2 |  6 12 | 12
------------+---+-------+----------+-------+---
x3o . . . . | 3 |  3  0 | 2N  *  * |  6  0 |  6
x . . x . . | 4 |  2  2 |  * 9N  * |  2  2 |  4
. . . x3o . | 3 |  0  3 |  *  * 2N |  0  6 |  6
------------+---+-------+----------+-------+---
x3o . x . . ♦ 6 |  6  3 |  2  3  0 | 6N  * |  2
x . . x3o . ♦ 6 |  3  6 |  0  3  2 |  * 6N |  2
------------+---+-------+----------+-------+---
x3o . x3o . ♦ 9 |  9  9 |  3  9  3 |  3  3 | 4N
```
```or
. . . . . .    | N | 12 | 12 36 |  72 | 36
---------------+---+----+-------+-----+---
x . . . . .  & | 2 | 6N |  2  6 |  18 | 12
---------------+---+----+-------+-----+---
x3o . . . .  & | 3 |  3 | 4N  * |   6 |  6
x . . x . .    | 4 |  4 |  * 9N |   4 |  4
---------------+---+----+-------+-----+---
x3o . x . .  & ♦ 6 |  9 |  2  3 | 12N |  2
---------------+---+----+-------+-----+---
x3o . x3o .    ♦ 9 | 18 |  6  9 |   6 | 4N
```

```x3o6o x3o3o3*d   (N → ∞)

. . . . . .    | N |  6  6 |  6 36 3 3 | 36 18 18 | 18 18
---------------+---+-------+-----------+----------+------
x . . . . .    | 2 | 3N  * |  2  6 0 0 | 12  3  3 |  6  6
. . . x . .    | 2 |  * 3N |  0  6 1 1 |  6  6  6 |  6  6
---------------+---+-------+-----------+----------+------
x3o . . . .    | 3 |  3  0 | 2N  * * * |  6  0  0 |  3  3
x . . x . .    | 4 |  2  2 |  * 9N * * |  2  1  1 |  2  2
. . . x3o .    | 3 |  0  3 |  *  * N * |  0  6  0 |  6  0
. . . x . o3*d | 3 |  0  3 |  *  * * N |  0  0  6 |  0  6
---------------+---+-------+-----------+----------+------
x3o . x . .    ♦ 6 |  6  3 |  2  3 0 0 | 6N  *  * |  1  1
x . . x3o .    ♦ 6 |  3  6 |  0  3 2 0 |  * 3N  * |  2  0
x . . x . o3*d ♦ 6 |  3  6 |  0  3 0 2 |  *  * 3N |  0  2
---------------+---+-------+-----------+----------+------
x3o . x3o .    ♦ 9 |  9  9 |  3  9 3 0 |  3  3  0 | 2N  *
x3o . x . o3*d ♦ 9 |  9  9 |  3  9 0 3 |  3  0  3 |  * 2N
```

```x3o3o3*a x3o3o3*d   (N → ∞)

. . .    . . .    | N |  6  6 | 3 3 36 3 3 | 18 18 18 18 | 9 9 9 9
------------------+---+-------+------------+-------------+--------
x . .    . . .    | 2 | 3N  * | 1 1  6 0 0 |  6  6  3  3 | 3 3 3 3
. . .    x . .    | 2 |  * 3N | 0 0  6 1 1 |  3  3  6  6 | 3 3 3 3
------------------+---+-------+------------+-------------+--------
x3o .    . . .    | 3 |  3  0 | N *  * * * |  6  0  0  0 | 3 3 0 0
x . o3*a . . .    | 3 |  3  0 | * N  * * * |  0  6  0  0 | 0 0 3 3
x . .    x . .    | 4 |  2  2 | * * 9N * * |  1  1  1  1 | 1 1 1 1
. . .    x3o .    | 3 |  0  3 | * *  * N * |  0  0  6  0 | 3 0 3 0
. . .    x . o3*d | 3 |  0  3 | * *  * * N |  0  0  0  6 | 0 3 0 3
------------------+---+-------+------------+-------------+--------
x3o .    x . .    ♦ 6 |  6  3 | 2 0  3 0 0 | 3N  *  *  * | 1 1 0 0
x . o3*a x . .    ♦ 6 |  6  3 | 0 2  3 0 0 |  * 3N  *  * | 0 0 1 1
x . .    x3o .    ♦ 6 |  3  6 | 0 0  3 2 0 |  *  * 3N  * | 1 0 1 0
x . .    x . o3*d ♦ 6 |  3  6 | 0 0  3 0 2 |  *  *  * 3N | 0 1 0 1
------------------+---+-------+------------+-------------+--------
x3o .    x3o .    ♦ 9 |  9  9 | 3 0  9 3 0 |  3  0  3  0 | N * * *
x3o .    x . o3*d ♦ 9 |  9  9 | 3 0  9 0 3 |  3  0  0  3 | * N * *
x . o3*a x3o .    ♦ 9 |  9  9 | 0 3  9 3 0 |  0  3  3  0 | * * N *
x . o3*a x . o3*d ♦ 9 |  9  9 | 0 3  9 0 3 |  0  3  0  3 | * * * N
```