Acronym | tistadip |
Name |
triangle - pentagram duoprism, pentagram - stip wedge |
© | |
Circumradius | sqrt[(25-3 sqrt(5))/30] = 0.780850 |
Dihedral angles | |
Face vector | 15, 30, 23, 8 |
Confer |
|
External links |
As abstract polytope tistadip is isomorphic to trapedip, thereby replacing pentagrams by pentagons, resp. stip by pip.
Incidence matrix according to Dynkin symbol
x3o x5/2o . . . . | 15 | 2 2 | 1 4 1 | 2 2 ----------+----+-------+--------+---- x . . . | 2 | 15 * | 1 2 0 | 2 1 . . x . | 2 | * 15 | 0 2 1 | 1 2 ----------+----+-------+--------+---- x3o . . | 3 | 3 0 | 5 * * | 2 0 x . x . | 4 | 2 2 | * 15 * | 1 1 . . x5/2o | 5 | 0 5 | * * 3 | 0 2 ----------+----+-------+--------+---- x3o x . ♦ 6 | 6 3 | 2 3 0 | 5 * x . x5/2o ♦ 10 | 5 10 | 0 5 2 | * 3
x3o x5/3o . . . . | 15 | 2 2 | 1 4 1 | 2 2 ----------+----+-------+--------+---- x . . . | 2 | 15 * | 1 2 0 | 2 1 . . x . | 2 | * 15 | 0 2 1 | 1 2 ----------+----+-------+--------+---- x3o . . | 3 | 3 0 | 5 * * | 2 0 x . x . | 4 | 2 2 | * 15 * | 1 1 . . x5/3o | 5 | 0 5 | * * 3 | 0 2 ----------+----+-------+--------+---- x3o x . ♦ 6 | 6 3 | 2 3 0 | 5 * x . x5/3o ♦ 10 | 5 10 | 0 5 2 | * 3
x3/2o x5/2o . . . . | 15 | 2 2 | 1 4 1 | 2 2 ------------+----+-------+--------+---- x . . . | 2 | 15 * | 1 2 0 | 2 1 . . x . | 2 | * 15 | 0 2 1 | 1 2 ------------+----+-------+--------+---- x3/2o . . | 3 | 3 0 | 5 * * | 2 0 x . x . | 4 | 2 2 | * 15 * | 1 1 . . x5/2o | 5 | 0 5 | * * 3 | 0 2 ------------+----+-------+--------+---- x3/2o x . ♦ 6 | 6 3 | 2 3 0 | 5 * x . x5/2o ♦ 10 | 5 10 | 0 5 2 | * 3
x3/2o x5/3o . . . . | 15 | 2 2 | 1 4 1 | 2 2 ------------+----+-------+--------+---- x . . . | 2 | 15 * | 1 2 0 | 2 1 . . x . | 2 | * 15 | 0 2 1 | 1 2 ------------+----+-------+--------+---- x3/2o . . | 3 | 3 0 | 5 * * | 2 0 x . x . | 4 | 2 2 | * 15 * | 1 1 . . x5/3o | 5 | 0 5 | * * 3 | 0 2 ------------+----+-------+--------+---- x3/2o x . ♦ 6 | 6 3 | 2 3 0 | 5 * x . x5/3o ♦ 10 | 5 10 | 0 5 2 | * 3
ox xx5/2oo&#x → height = sqrt(3)/2 = 0.866025
({5/2} || stip)
o. o.5/2o. | 5 * | 2 2 0 0 | 1 1 4 0 0 | 2 2 0
.o .o5/2.o | * 10 | 0 1 1 2 | 0 1 2 2 1 | 2 1 1
--------------+------+-----------+------------+------
.. x. .. | 2 0 | 5 * * * | 1 0 2 0 0 | 1 2 0
oo oo5/2oo&#x | 1 1 | * 10 * * | 0 1 2 0 0 | 2 1 0
.x .. .. | 0 2 | * * 5 * | 0 1 0 2 0 | 2 0 1
.. .x .. | 0 2 | * * * 10 | 0 0 1 1 1 | 1 1 1
--------------+------+-----------+------------+------
.. x.5/2o. | 5 0 | 5 0 0 0 | 1 * * * * | 0 2 0
ox .. ..&#x | 1 2 | 0 2 1 0 | * 5 * * * | 2 0 0
.. xx ..&#x | 2 2 | 1 2 0 1 | * * 10 * * | 1 1 0
.x .x .. | 0 4 | 0 0 2 2 | * * * 5 * | 1 0 1
.. .x5/2.o | 0 5 | 0 0 0 5 | * * * * 2 | 0 1 1
--------------+------+-----------+------------+------
ox xx ..&#x ♦ 2 4 | 1 4 2 2 | 0 2 2 1 0 | 5 * *
.. xx5/2oo&#x ♦ 5 5 | 5 5 0 5 | 1 0 5 0 1 | * 2 *
.x .x5/2.o ♦ 0 10 | 0 0 5 10 | 0 0 0 5 2 | * * 1
© 2004-2025 | top of page |