Acronym | stappyp |
Name |
pentagram-pyramidal prism, line || stip |
Circumradius | sqrt[(7-sqrt(5))/8] = 0.771681 |
Dihedral angles | |
Face vector | 12, 26, 22, 8 |
Confer |
|
As abstract polytope stappyp is isomorphic to peppyp, thereby replacing pentagrams by pentagons resp. replacing stappy by peppy and stip by pip.
Incidence matrix according to Dynkin symbol
xx ox5/2oo&#x → height = sqrt((5+sqrt(5))/10) = 0.850651
(line || stip)
o. o.5/2o. | 2 * | 1 5 0 0 | 5 5 0 0 | 5 1 0
.o .o5/2.o | * 10 | 0 1 1 2 | 1 2 2 1 | 2 1 1
--------------+------+-----------+----------+------
x. .. .. | 2 0 | 1 * * * | 5 0 0 0 | 5 0 0
oo oo5/2oo&#x | 1 1 | * 10 * * | 1 2 0 0 | 2 1 0
.x .. .. | 0 2 | * * 5 * | 1 0 2 0 | 2 0 1
.. .x .. | 0 2 | * * * 10 | 0 1 1 1 | 1 1 1
--------------+------+-----------+----------+------
xx .. ..&#x | 2 2 | 1 2 1 0 | 5 * * * | 2 0 0
.. ox ..&#x | 1 2 | 0 2 0 1 | * 10 * * | 1 1 0
.x .x .. | 0 4 | 0 0 2 2 | * * 5 * | 1 0 1
.. .x5/2.o | 0 5 | 0 0 0 5 | * * * 2 | 0 1 1
--------------+------+-----------+----------+------
xx ox ..&#x ♦ 2 4 | 1 4 2 2 | 2 2 1 0 | 5 * *
.. ox5/2oo&#x ♦ 1 5 | 0 5 0 5 | 0 5 0 1 | * 2 *
.x .x5/2.o ♦ 0 10 | 0 0 5 10 | 0 0 5 2 | * * 1
stappy || stappy → height = 1
1 * * * | 5 1 0 0 0 0 | 5 5 0 0 0 0 | 1 5 0 0 top-tip
* 5 * * | 1 0 2 1 0 0 | 2 1 1 0 0 0 | 1 2 1 0 top-base
* * 1 * | 0 1 0 0 5 0 | 0 5 0 0 5 0 | 0 5 0 1 bottom-tip
* * * 5 | 0 0 0 1 1 2 | 0 1 0 2 2 1 | 0 2 1 1 bottom-base
----------+-------------+-------------+--------
1 1 0 0 | 5 * * * * * | 2 1 0 0 0 0 | 1 2 0 0
1 0 1 0 | * 1 * * * * | 0 5 0 0 0 0 | 0 5 0 0
0 2 0 0 | * * 5 * * * | 1 0 1 1 0 0 | 1 1 1 0
0 1 0 1 | * * * 5 * * | 0 1 0 2 0 0 | 0 2 1 0
0 0 1 1 | * * * * 5 * | 0 1 0 0 2 0 | 0 2 0 1
0 0 0 2 | * * * * * 5 | 0 0 0 1 1 1 | 0 1 1 1
----------+-------------+-------------+--------
1 2 0 0 | 2 0 1 0 0 0 | 5 * * * * * | 1 1 0 0
1 1 1 1 | 1 1 0 1 1 0 | * 5 * * * * | 0 2 0 0
0 5 0 0 | 0 0 5 0 0 0 | * * 1 * * * | 1 0 1 0
0 2 0 2 | 0 0 1 2 0 1 | * * * 5 * * | 0 1 1 0
0 0 1 2 | 0 0 0 0 2 1 | * * * * 5 * | 0 1 0 1
0 0 0 5 | 0 0 0 0 0 5 | * * * * * 1 | 0 0 1 1
----------+-------------+-------------+--------
♦ 1 5 0 0 | 5 0 5 0 0 0 | 5 0 1 0 0 0 | 1 * * *
♦ 1 2 1 2 | 2 1 1 2 2 1 | 1 2 0 1 1 0 | * 5 * *
♦ 0 5 0 5 | 0 0 5 5 0 5 | 0 0 1 5 0 1 | * * 1 *
♦ 0 0 1 5 | 0 0 0 0 5 5 | 0 0 0 0 5 1 | * * * 1
oxxo5/2oooo&#xr → height(1,2) = height(3,4) = sqrt((5+sqrt(5))/10) = 0.850651 height(1,4) = height(2,3) = 1 ( (pt || {5/2}) || (pt || {5/2}) ) o...5/2o... | 1 * * * | 5 1 0 0 0 0 | 5 5 0 0 0 0 | 1 5 0 0 .o..5/2.o.. | * 5 * * | 1 0 2 1 0 0 | 2 1 1 2 0 0 | 1 2 1 0 ..o.5/2..o. | * * 5 * | 0 0 0 1 2 1 | 0 1 0 2 1 2 | 0 2 1 1 ...o5/2...o | * * * 1 | 0 1 0 0 0 5 | 0 5 0 0 0 5 | 0 5 0 1 ----------------+---------+-------------+-------------+-------- oo..5/2oo..&#x | 1 1 0 0 | 5 * * * * * | 2 1 0 0 0 0 | 1 2 0 0 o..o5/2o..o&#x | 1 0 0 1 | * 1 * * * * | 0 5 0 0 0 0 | 0 5 0 0 .x.. .... | 0 2 0 0 | * * 5 * * * | 1 0 1 1 0 0 | 1 1 1 0 .oo.5/2.oo.&#x | 0 1 1 0 | * * * 5 * * | 0 1 0 2 0 0 | 0 2 1 0 ..x. .... | 0 0 2 0 | * * * * 5 * | 0 0 0 1 1 1 | 0 1 1 1 ..oo5/2..oo&#x | 0 0 1 1 | * * * * * 5 | 0 1 0 0 0 2 | 0 2 0 1 ----------------+---------+-------------+-------------+-------- ox.. ....&#x | 1 2 0 0 | 2 0 1 0 0 0 | 5 * * * * * | 1 1 0 0 oooo5/2oooo&#xr | 1 1 1 1 | 1 1 0 1 0 1 | * 5 * * * * | 0 2 0 0 .x..5/2.o.. | 0 5 0 0 | 0 0 5 0 0 0 | * * 1 * * * | 1 0 1 0 .xx. ....&#x | 0 2 2 0 | 0 0 1 2 1 0 | * * * 5 * * | 0 1 1 0 ..x.5/2..o. | 0 0 5 0 | 0 0 0 0 5 0 | * * * * 1 * | 0 0 1 1 ..xo ....&#x | 0 0 2 1 | 0 0 0 0 1 2 | * * * * * 5 | 0 1 0 1 ----------------+---------+-------------+-------------+-------- ox..5/2oo..&#x ♦ 1 5 0 0 | 5 0 5 0 0 0 | 5 0 1 0 0 0 | 1 * * * oxxo ....&#xr ♦ 1 2 2 1 | 2 1 1 2 1 2 | 1 2 0 1 0 1 | * 5 * * .xx.5/2.oo.&#x ♦ 0 5 5 0 | 0 0 5 5 5 0 | 0 0 1 5 1 0 | * * 1 * ..xo5/2..oo&#x ♦ 0 0 5 1 | 0 0 0 0 5 5 | 0 0 0 0 1 5 | * * * 1
o(xo)x5/2o(oo)o&#xt (pt || ({5/2} || pt) || para {5/2}) o(..).5/2o(..). | 1 * * * | 5 1 0 0 0 0 | 5 5 0 0 0 0 | 1 5 0 0 .(o.).5/2.(o.). | * 5 * * | 1 0 2 1 0 0 | 2 1 1 2 0 0 | 1 2 1 0 .(.o).5/2.(.o). | * * 1 * | 0 1 0 0 5 0 | 0 5 0 0 5 0 | 0 5 0 1 .(..)o5/2.(..)o | * * * 5 | 0 0 0 1 1 2 | 0 1 0 2 2 1 | 0 2 1 1 --------------------+---------+-------------+-------------+-------- o(o.).5/2o(o.).&#x | 1 1 0 0 | 5 * * * * * | 2 1 0 0 0 0 | 1 2 0 0 o(.o).5/2o(.o).&#x | 1 0 1 0 | * 1 * * * * | 0 5 0 0 0 0 | 0 5 0 0 .(x.). .(..). | 0 2 0 0 | * * 5 * * * | 1 0 1 1 0 0 | 1 1 1 0 .(o.)o5/2.(o.)o&#x | 0 1 0 1 | * * * 5 * * | 0 1 0 2 0 0 | 0 2 1 0 .(.o)o5/2.(.o)o&#x | 0 0 1 1 | * * * * 5 * | 0 1 0 0 2 0 | 0 2 0 1 .(..)x .(..). | 0 0 0 2 | * * * * * 5 | 0 0 0 1 1 1 | 0 1 1 1 --------------------+---------+-------------+-------------+-------- o(x.). .(..).&#x | 1 2 0 0 | 2 0 1 0 0 0 | 5 * * * * * | 1 1 0 0 o(oo)o5/2o(oo)o&#xt | 1 1 1 1 | 1 1 0 1 1 0 | * 5 * * * * | 0 2 0 0 .(x.).5/2.(o.). | 0 5 0 0 | 0 0 5 0 0 0 | * * 1 * * * | 1 0 1 0 .(x.)x .(..).&#x | 0 2 0 2 | 0 0 1 2 0 1 | * * * 5 * * | 0 1 1 0 .(.o)x .(..).&#x | 0 0 1 2 | 0 0 0 0 2 1 | * * * * 5 * | 0 1 0 1 .(..)x5/2.(..)o | 0 0 0 5 | 0 0 0 0 0 5 | * * * * * 1 | 0 0 1 1 --------------------+---------+-------------+-------------+-------- o(x.).5/2o(o.).&#x ♦ 1 5 0 0 | 5 0 5 0 0 0 | 5 0 1 0 0 0 | 1 * * * o(xo)x .(..).&#xt ♦ 1 2 1 2 | 2 1 1 2 2 1 | 1 2 0 1 1 0 | * 5 * * .(x.)x5/2.(o.)o&#x ♦ 0 5 0 5 | 0 0 5 5 0 5 | 0 0 1 5 0 1 | * * 1 * .(.o)x5/2.(.o)o&#x ♦ 0 0 1 5 | 0 0 0 0 5 5 | 0 0 0 0 5 1 | * * * 1
© 2004-2025 | top of page |