Acronym (n,2m)-pap Name n-gon - 2m-gon prismantiprismoid,s-n-s-2-s-2m-x,edge-alternated 2n-gon - 4m-gon duoprism Circumradius ... Confer general polytopal classes: isogonal Externallinks , e.g. (n = 3, m = 2)   (n = m = 3)

These isogonal polychora are obtained by edge alternation of the uniform 2n,4m-duoprism (with n > 2, m > 1).

Conceptionally the dyad - 2m-gon prismantiprismoid (case n = 2) would belong here as well, but because of degeneracies the incidences then are slightly different and thus are provided in a different page.

Incidence matrix according to Dynkin symbol

```s-n-s-2-s-2m-x   (n > 2, m > 1)

demi( .   .   .    . ) | 4nm |   1   1   1   2   1 |  1  1   3   2   2   2 |  1  1 1 1   3
-----------------------+-----+---------------------+-----------------------+--------------
demi( .   .   .    x ) |   2 | 2nm   *   *   *   * |  0  1   0   2   1   1 |  0  1 1 1   2  x
s   2   s    .   |   2 |   * 2nm   *   *   * |  0  0   2   0   2   0 |  1  0 1 0   2  q
.   s 2 s    .   |   2 |   *   * 2nm   *   * |  0  0   2   0   0   2 |  1  0 0 1   2  q
sefa( s-n-s   .    . ) |   2 |   *   *   * 4nm   * |  1  0   1   1   0   0 |  1  1 0 0   1  a=x(n,2)
sefa( .   .   s-2m-x ) |   2 |   *   *   *   * 2nm |  0  1   0   0   1   1 |  0  0 1 1   1  b=x(2m,3)
-----------------------+-----+---------------------+-----------------------+--------------
s-n-s   .    .   |   n |   0   0   0   n   0 | 4m  *   *   *   *   * |  1  1 0 0   0  a-{n}
.   .   s-2m-x   |  2m |   m   0   0   0   m |  * 2n   *   *   *   * |  0  0 1 1   0  (x,b)-{2m}
sefa( s-n-s-2-s    . ) |   3 |   0   1   1   1   0 |  *  * 4nm   *   *   * |  1  0 0 0   1  oa&#q
sefa( s-n-s   2    x ) |   4 |   2   0   0   2   0 |  *  *   * 2nm   *   * |  0  1 0 0   1  (x,a)-{4}
sefa( s   2   s-2m-x ) |   4 |   1   2   0   0   1 |  *  *   *   * 2nm   * |  0  0 1 0   1  xb&#q
sefa( .   s-2-s-2m-x ) |   4 |   1   0   2   0   1 |  *  *   *   *   * 2nm |  0  0 0 1   1  xb&#q
-----------------------+-----+---------------------+-----------------------+--------------
s-n-s-2-s    .   |  2n |   0   n   n  2n   0 |  2  0  2n   0   0   0 | 2m  * * *   *  ao-n-oa&#q, n-ap variant
s-n-s   2    x   |  2n |   n   0   0  2n   0 |  2  0   0   n   0   0 |  * 2m * *   *  aa-n-oo&#x, n-p variant
s   2   s-2m-x   |  4m |  2m  2m   0   0  2m |  0  2   0   0  2m   0 |  *  * n *   *  bx-m-xb&#q, trapezo-2m-p
.   s-2-s-2m-x   |  4m |  2m   0  2m   0  2m |  0  2   0   0   0  2m |  *  * * n   *  bx-m-xb&#q, trapezo-2m-p
sefa( s-n-s-2-s-2m-x ) |   6 |   2   2   2   2   1 |  0  0   2   1   1   1 |  *  * * * 2nm  bx2oa&#q, wedge-like trip variant

starting figure: x-n-x x-2m-x
```