Acronym
| shothat, (inbetween: shath) |

Name
| small hexagonal-trigonal-hexagonal tiling |

© | |

Vertex figure | [3/2,12,6,12] |

Colonel of regiment | rothat |

External
links |

This is the euclidean counterpart of the small cubicuboctahedron (socco) or small dodekicosidodecahedron saddid).

As abstract polytope shothat is isomorphic to ghothat, thereby replacing dodecagons by dodecagrams.

Incidence matrix according to Dynkin symbol

x6x3o6/5*a (N → ∞) . . . | 6N | 2 2 | 2 1 1 -----------+----+-------+------- x . . | 2 | 6N * | 1 1 0 . x . | 2 | * 6N | 1 0 1 -----------+----+-------+------- x6x . | 12 | 6 6 | N * * x . o6/5*a | 6 | 6 0 | * N * . x3o | 3 | 0 3 | * * 2N

x6x3/2o6*a (N → ∞) . . . | 6N | 2 2 | 2 1 1 -----------+----+-------+------- x . . | 2 | 6N * | 1 1 0 . x . | 2 | * 6N | 1 0 1 -----------+----+-------+------- x6x . | 12 | 6 6 | N * * x . o6*a | 6 | 6 0 | * N * . x3/2o | 3 | 0 3 | * * 2N

β3o6x (N → ∞) both( . . . ) | 6N | 2 2 | 1 1 2 --------------+----+-------+------- both( . . x ) | 2 | 6N * | 1 0 1 sefa( β3o . ) | 2 | * 6N | 0 1 1 --------------+----+-------+------- both( . o6x ) | 6 | 6 0 |N* * β3o . ♦ 3 | 0 3 | * 2N * sefa( β3o6x ) | 12 | 6 6 | * * N starting figure: x3o6x

© 2004-2021 | top of page |