Acronym rawvaty Name retrosphenoverted triakisicositetrachoron Circumradius sqrt[4+2 sqrt(2)] = 2.613126 General of army srico Colonel of regiment srico Externallinks

As abstract polytope rawvaty is isomorphic to wavaty, thereby replacing octagons by octagrams, and thus tic by quith and socco by gocco. – As such rawvaty is a lieutenant.

Incidence matrix according to Dynkin symbol

```o3x4o3/2x4*b

. . .   .    | 288 |   4   2 |   2   2   4  1 |  1  2  2
-------------+-----+---------+----------------+---------
. x .   .    |   2 | 576   * |   1   1   1  0 |  1  1  1
. . .   x    |   2 |   * 288 |   0   0   2  1 |  0  1  2
-------------+-----+---------+----------------+---------
o3x .   .    |   3 |   3   0 | 192   *   *  * |  1  1  0
. x4o   .    |   4 |   4   0 |   * 144   *  * |  1  0  1
. x .   x4*b |   8 |   4   4 |   *   * 144  * |  0  1  1
. . o3/2x    |   3 |   0   3 |   *   *   * 96 |  0  0  2
-------------+-----+---------+----------------+---------
o3x4o   .    ♦  12 |  24   0 |   8   6   0  0 | 24  *  *
o3x .   x4*b ♦  24 |  24  12 |   8   0   6  0 |  * 24  *
. x4o3/2x4*b ♦  24 |  24  24 |   0   6   6  8 |  *  * 24
```

```o3x4/3o3x4*b

. .   . .    | 288 |   4   2 |   2   2   4  1 |  1  2  2
-------------+-----+---------+----------------+---------
. x   . .    |   2 | 576   * |   1   1   1  0 |  1  1  1
. .   . x    |   2 |   * 288 |   0   0   2  1 |  0  1  2
-------------+-----+---------+----------------+---------
o3x   . .    |   3 |   3   0 | 192   *   *  * |  1  1  0
. x4/3o .    |   4 |   4   0 |   * 144   *  * |  1  0  1
. x   . x4*b |   8 |   4   4 |   *   * 144  * |  0  1  1
. .   o3x    |   3 |   0   3 |   *   *   * 96 |  0  0  2
-------------+-----+---------+----------------+---------
o3x4/3o .    ♦  12 |  24   0 |   8   6   0  0 | 24  *  *
o3x   . x4*b ♦  24 |  24  12 |   8   0   6  0 |  * 24  *
. x4/3o3x4*b ♦  24 |  24  24 |   0   6   6  8 |  *  * 24
```

```o3/2x4o3/2x4*b

.   . .   .    | 288 |   4   2 |   2   2   4  1 |  1  2  2
---------------+-----+---------+----------------+---------
.   x .   .    |   2 | 576   * |   1   1   1  0 |  1  1  1
.   . .   x    |   2 |   * 288 |   0   0   2  1 |  0  1  2
---------------+-----+---------+----------------+---------
o3/2x .   .    |   3 |   3   0 | 192   *   *  * |  1  1  0
.   x4o   .    |   4 |   4   0 |   * 144   *  * |  1  0  1
.   x .   x4*b |   8 |   4   4 |   *   * 144  * |  0  1  1
.   . o3/2x    |   3 |   0   3 |   *   *   * 96 |  0  0  2
---------------+-----+---------+----------------+---------
o3/2x4o   .    ♦  12 |  24   0 |   8   6   0  0 | 24  *  *
o3/2x .   x4*b ♦  24 |  24  12 |   8   0   6  0 |  * 24  *
.   x4o3/2x4*b ♦  24 |  24  24 |   0   6   6  8 |  *  * 24
```

```o3/2x4/3o3x4*b

.   .   . .    | 288 |   4   2 |   2   2   4  1 |  1  2  2
---------------+-----+---------+----------------+---------
.   x   . .    |   2 | 576   * |   1   1   1  0 |  1  1  1
.   .   . x    |   2 |   * 288 |   0   0   2  1 |  0  1  2
---------------+-----+---------+----------------+---------
o3/2x   . .    |   3 |   3   0 | 192   *   *  * |  1  1  0
.   x4/3o .    |   4 |   4   0 |   * 144   *  * |  1  0  1
.   x   . x4*b |   8 |   4   4 |   *   * 144  * |  0  1  1
.   .   o3x    |   3 |   0   3 |   *   *   * 96 |  0  0  2
---------------+-----+---------+----------------+---------
o3/2x4/3o .    ♦  12 |  24   0 |   8   6   0  0 | 24  *  *
o3/2x   . x4*b ♦  24 |  24  12 |   8   0   6  0 |  * 24  *
.   x4/3o3x4*b ♦  24 |  24  24 |   0   6   6  8 |  *  * 24
```

```β3o4x3o

both( . . . . ) | 288 |   4   2 |   2   2  1   4 |  1  2  2
----------------+-----+---------+----------------+---------
both( . . x . ) |   2 | 576   * |   1   1  0   1 |  1  1  1
sefa( β3o . . ) |   2 |   * 288 |   0   0  1   2 |  0  2  1
----------------+-----+---------+----------------+---------
both( . o4x . ) |   4 |   4   0 | 144   *  *   * |  1  1  0
both( . . x3o ) |   3 |   3   0 |   * 192  *   * |  1  0  1
β3o . .   ♦   3 |   0   3 |   *   * 96   * |  0  2  0
sefa( β3o4x . ) |   8 |   4   4 |   *   *  * 144 |  0  1  1
----------------+-----+---------+----------------+---------
both( . o4x3o ) ♦  12 |  24   0 |   6   8  0   0 | 24  *  *
β3o4x .   ♦  24 |  24  24 |   6   0  8   6 |  * 24  *
sefa( β3o4x3o ) ♦  24 |  24  12 |   0   8  0   6 |  *  * 24

starting figure: x3o4x3o
```