Acronym | rafficdi |
Name | retrofrustic tetracontoctadisicositetrachoron |
Cross sections |
© |
Circumradius | sqrt(2) = 1.414214 |
Coordinates | ((1+sqrt(2))/2, 1/2, 1/2, (sqrt(2)-1)/2) & all permutations, all changes of sign |
General of army | cont |
Colonel of regiment | afdec |
Face vector | 288, 1152, 960, 96 |
Confer |
|
External links |
As abstract polytope rafficdi is automorph, thereby interchanging the roles of sirco and querco.
Incidence matrix according to Dynkin symbol
x3o4/3x3o4*a . . . . | 288 | 4 4 | 2 4 2 2 2 | 2 1 2 1 -------------+-----+---------+---------------------+------------ x . . . | 2 | 576 * | 1 1 1 0 0 | 1 1 1 0 . . x . | 2 | * 576 | 0 1 0 1 1 | 1 0 1 1 -------------+-----+---------+---------------------+------------ x3o . . | 3 | 3 0 | 192 * * * * | 1 1 0 0 x . x . | 4 | 2 2 | * 288 * * * | 1 0 1 0 x . . o4*a | 4 | 4 0 | * * 144 * * | 0 1 1 0 . o4/3x . | 4 | 0 4 | * * * 144 * | 1 0 0 1 . . x3o | 3 | 0 3 | * * * * 192 | 0 0 1 1 -------------+-----+---------+---------------------+------------ x3o4/3x . ♦ 24 | 24 24 | 8 12 0 6 0 | 24 * * * x3o . o4*a ♦ 12 | 24 0 | 8 0 6 0 0 | * 24 * * x . x3o4*a ♦ 24 | 24 24 | 0 12 6 0 8 | * * 24 * . o4/3x3o ♦ 12 | 0 24 | 0 0 0 6 8 | * * * 24
x3o4/3x3/2o4/3*a . . . . | 288 | 4 4 | 2 4 2 2 2 | 2 1 2 1 -----------------+-----+---------+---------------------+------------ x . . . | 2 | 576 * | 1 1 1 0 0 | 1 1 1 0 . . x . | 2 | * 576 | 0 1 0 1 1 | 1 0 1 1 -----------------+-----+---------+---------------------+------------ x3o . . | 3 | 3 0 | 192 * * * * | 1 1 0 0 x . x . | 4 | 2 2 | * 288 * * * | 1 0 1 0 x . . o4/3*a | 4 | 4 0 | * * 144 * * | 0 1 1 0 . o4/3x . | 4 | 0 4 | * * * 144 * | 1 0 0 1 . . x3/2o | 3 | 0 3 | * * * * 192 | 0 0 1 1 -----------------+-----+---------+---------------------+------------ x3o4/3x . ♦ 24 | 24 24 | 8 12 0 6 0 | 24 * * * x3o . o4/3*a ♦ 12 | 24 0 | 8 0 6 0 0 | * 24 * * x . x3/2o4/3*a ♦ 24 | 24 24 | 0 12 6 0 8 | * * 24 * . o4/3x3/2o ♦ 12 | 0 24 | 0 0 0 6 8 | * * * 24
x3/2o4x3o4*a . . . . | 288 | 4 4 | 2 4 2 2 2 | 2 1 2 1 -------------+-----+---------+---------------------+------------ x . . . | 2 | 576 * | 1 1 1 0 0 | 1 1 1 0 . . x . | 2 | * 576 | 0 1 0 1 1 | 1 0 1 1 -------------+-----+---------+---------------------+------------ x3/2o . . | 3 | 3 0 | 192 * * * * | 1 1 0 0 x . x . | 4 | 2 2 | * 288 * * * | 1 0 1 0 x . . o4*a | 4 | 4 0 | * * 144 * * | 0 1 1 0 . o4x . | 4 | 0 4 | * * * 144 * | 1 0 0 1 . . x3o | 3 | 0 3 | * * * * 192 | 0 0 1 1 -------------+-----+---------+---------------------+------------ x3/2o4x . ♦ 24 | 24 24 | 8 12 0 6 0 | 24 * * * x3/2o . o4*a ♦ 12 | 24 0 | 8 0 6 0 0 | * 24 * * x . x3o4*a ♦ 24 | 24 24 | 0 12 6 0 8 | * * 24 * . o4x3o ♦ 12 | 0 24 | 0 0 0 6 8 | * * * 24
x3/2o4x3/2o4/3*a . . . . | 288 | 4 4 | 2 4 2 2 2 | 2 1 2 1 -----------------+-----+---------+---------------------+------------ x . . . | 2 | 576 * | 1 1 1 0 0 | 1 1 1 0 . . x . | 2 | * 576 | 0 1 0 1 1 | 1 0 1 1 -----------------+-----+---------+---------------------+------------ x3/2o . . | 3 | 3 0 | 192 * * * * | 1 1 0 0 x . x . | 4 | 2 2 | * 288 * * * | 1 0 1 0 x . . o4/3*a | 4 | 4 0 | * * 144 * * | 0 1 1 0 . o4x . | 4 | 0 4 | * * * 144 * | 1 0 0 1 . . x3/2o | 3 | 0 3 | * * * * 192 | 0 0 1 1 -----------------+-----+---------+---------------------+------------ x3/2o4x . ♦ 24 | 24 24 | 8 12 0 6 0 | 24 * * * x3/2o . o4/3*a ♦ 12 | 24 0 | 8 0 6 0 0 | * 24 * * x . x3/2o4/3*a ♦ 24 | 24 24 | 0 12 6 0 8 | * * 24 * . o4x3/2o ♦ 12 | 0 24 | 0 0 0 6 8 | * * * 24
© 2004-2025 | top of page |