Acronym | quippirgax | ||||||||||||||||||||||||||||||||
Name | quasiprismatorhombated grand hexacosachoron | ||||||||||||||||||||||||||||||||
Circumradius | sqrt[48-21 sqrt(5)] = 1.021064 | ||||||||||||||||||||||||||||||||
Colonel of regiment |
(is itself locally convex
– uniform polychoral members:
| ||||||||||||||||||||||||||||||||
Face vector | 7200, 18000, 13440, 2640 | ||||||||||||||||||||||||||||||||
Confer |
| ||||||||||||||||||||||||||||||||
External links |
As abstract polytope quippirgax is isomorphic to prix, thereby replacing the decagrams by decagons, resp. replacing the quit gissid by tid and the stiddip by dip. – As such quippirgax is a lieutenant.
Incidence matrix according to Dynkin symbol
x3o3x5/3x . . . . | 7200 | 2 2 1 | 1 2 2 1 2 | 1 1 2 1 ----------+------+----------------+--------------------------+----------------- x . . . | 2 | 7200 * * | 1 1 1 0 0 | 1 1 1 0 . . x . | 2 | * 7200 * | 0 1 0 1 1 | 1 0 1 1 . . . x | 2 | * * 3600 | 0 0 2 0 2 | 0 1 2 1 ----------+------+----------------+--------------------------+----------------- x3o . . | 3 | 3 0 0 | 2400 * * * * | 1 1 0 0 x . x . | 4 | 2 2 0 | * 3600 * * * | 1 0 1 0 x . . x | 4 | 2 0 2 | * * 3600 * * | 0 1 1 0 . o3x . | 3 | 0 3 0 | * * * 2400 * | 1 0 0 1 . . x5/3x | 10 | 0 5 5 | * * * * 1440 | 0 0 1 1 ----------+------+----------------+--------------------------+----------------- x3o3x . ♦ 12 | 12 12 0 | 4 6 0 4 0 | 600 * * * x3o . x ♦ 6 | 12 0 6 | 2 0 3 0 0 | * 1200 * * x . x5/3x ♦ 20 | 10 10 10 | 0 5 5 0 2 | * * 720 * . o3x5/3x ♦ 60 | 0 60 30 | 0 0 0 20 12 | * * * 120
x3/2o3/2x5/3x . . . . | 7200 | 2 2 1 | 1 2 2 1 2 | 1 1 2 1 --------------+------+----------------+--------------------------+----------------- x . . . | 2 | 7200 * * | 1 1 1 0 0 | 1 1 1 0 . . x . | 2 | * 7200 * | 0 1 0 1 1 | 1 0 1 1 . . . x | 2 | * * 3600 | 0 0 2 0 2 | 0 1 2 1 --------------+------+----------------+--------------------------+----------------- x3/2o . . | 3 | 3 0 0 | 2400 * * * * | 1 1 0 0 x . x . | 4 | 2 2 0 | * 3600 * * * | 1 0 1 0 x . . x | 4 | 2 0 2 | * * 3600 * * | 0 1 1 0 . o3/2x . | 3 | 0 3 0 | * * * 2400 * | 1 0 0 1 . . x5/3x | 10 | 0 5 5 | * * * * 1440 | 0 0 1 1 --------------+------+----------------+--------------------------+----------------- x3/2o3/2x . ♦ 12 | 12 12 0 | 4 6 0 4 0 | 600 * * * x3/2o . x ♦ 6 | 12 0 6 | 2 0 3 0 0 | * 1200 * * x . x5/3x ♦ 20 | 10 10 10 | 0 5 5 0 2 | * * 720 * . o3/2x5/3x ♦ 60 | 0 60 30 | 0 0 0 20 12 | * * * 120
© 2004-2025 | top of page |