Acronym quippirgax
Name quasiprismatorhombated grand hexacosachoron
Circumradius sqrt[48-21 sqrt(5)] = 1.021064
Colonel of regiment (is itself locally convex – uniform polychoral members:
by cells: cho co gaquatid oho quit gissid stiddip trip
girpixhi 6000120007200
quippirgax 0600001207201200
gippixhihy 0012060012001200
)
Face vector 7200, 18000, 13440, 2640
Confer
general polytopal classes:
Wythoffian polychora  
External
links
hedrondude   polytopewiki   WikiChoron

As abstract polytope quippirgax is isomorphic to prix, thereby replacing the decagrams by decagons, resp. replacing the quit gissid by tid and the stiddip by dip. – As such quippirgax is a lieutenant.


Incidence matrix according to Dynkin symbol

x3o3x5/3x

. . .   . | 7200 |    2    2    1 |    1    2    2    1    2 |   1    1   2   1
----------+------+----------------+--------------------------+-----------------
x . .   . |    2 | 7200    *    * |    1    1    1    0    0 |   1    1   1   0
. . x   . |    2 |    * 7200    * |    0    1    0    1    1 |   1    0   1   1
. . .   x |    2 |    *    * 3600 |    0    0    2    0    2 |   0    1   2   1
----------+------+----------------+--------------------------+-----------------
x3o .   . |    3 |    3    0    0 | 2400    *    *    *    * |   1    1   0   0
x . x   . |    4 |    2    2    0 |    * 3600    *    *    * |   1    0   1   0
x . .   x |    4 |    2    0    2 |    *    * 3600    *    * |   0    1   1   0
. o3x   . |    3 |    0    3    0 |    *    *    * 2400    * |   1    0   0   1
. . x5/3x |   10 |    0    5    5 |    *    *    *    * 1440 |   0    0   1   1
----------+------+----------------+--------------------------+-----------------
x3o3x   .    12 |   12   12    0 |    4    6    0    4    0 | 600    *   *   *
x3o .   x     6 |   12    0    6 |    2    0    3    0    0 |   * 1200   *   *
x . x5/3x    20 |   10   10   10 |    0    5    5    0    2 |   *    * 720   *
. o3x5/3x    60 |    0   60   30 |    0    0    0   20   12 |   *    *   * 120

x3/2o3/2x5/3x

.   .   .   . | 7200 |    2    2    1 |    1    2    2    1    2 |   1    1   2   1
--------------+------+----------------+--------------------------+-----------------
x   .   .   . |    2 | 7200    *    * |    1    1    1    0    0 |   1    1   1   0
.   .   x   . |    2 |    * 7200    * |    0    1    0    1    1 |   1    0   1   1
.   .   .   x |    2 |    *    * 3600 |    0    0    2    0    2 |   0    1   2   1
--------------+------+----------------+--------------------------+-----------------
x3/2o   .   . |    3 |    3    0    0 | 2400    *    *    *    * |   1    1   0   0
x   .   x   . |    4 |    2    2    0 |    * 3600    *    *    * |   1    0   1   0
x   .   .   x |    4 |    2    0    2 |    *    * 3600    *    * |   0    1   1   0
.   o3/2x   . |    3 |    0    3    0 |    *    *    * 2400    * |   1    0   0   1
.   .   x5/3x |   10 |    0    5    5 |    *    *    *    * 1440 |   0    0   1   1
--------------+------+----------------+--------------------------+-----------------
x3/2o3/2x   .    12 |   12   12    0 |    4    6    0    4    0 | 600    *   *   *
x3/2o   .   x     6 |   12    0    6 |    2    0    3    0    0 |   * 1200   *   *
x   .   x5/3x    20 |   10   10   10 |    0    5    5    0    2 |   *    * 720   *
.   o3/2x5/3x    60 |    0   60   30 |    0    0    0   20   12 |   *    *   * 120

© 2004-2024
top of page