Acronym | quequapech |
Name | quasiquasiprismated cubic honeycomb |
External links |
As abstract polytope quequapech is isomorphic to otch, thereby replacing all octagrams by octagons, resp. all stops by ops and all quitcoes by gircoes. – The 2-coloring thereof furthermore is isomorphic to gaquapech, when replacing just one half each.
Incidence matrix according to Dynkin symbol
x4/3x3x4/3x (N → ∞) . . . . | 48N | 1 1 1 1 | 1 1 1 1 1 1 | 1 1 1 1 ------------+-----+-----------------+----------------------+---------- x . . . | 2 | 24N * * * | 1 1 1 0 0 0 | 1 1 1 0 . x . . | 2 | * 24N * * | 1 0 0 1 1 0 | 1 1 0 1 . . x . | 2 | * * 24N * | 0 1 0 1 0 1 | 1 0 1 1 . . . x | 2 | * * * 24N | 0 0 1 0 1 1 | 0 1 1 1 ------------+-----+-----------------+----------------------+---------- x4/3x . . | 8 | 4 4 0 0 | 6N * * * * * | 1 1 0 0 x . x . | 4 | 2 0 2 0 | * 12N * * * * | 1 0 1 0 x . . x | 4 | 2 0 0 2 | * * 12N * * * | 0 1 1 0 . x3x . | 6 | 0 3 3 0 | * * * 8N * * | 1 0 0 1 . x . x | 4 | 0 2 0 2 | * * * * 12N * | 0 1 0 1 . . x4/3x | 8 | 0 0 4 4 | * * * * * 6N | 0 0 1 1 ------------+-----+-----------------+----------------------+---------- x4/3x3x . ♦ 48 | 24 24 24 0 | 6 12 0 8 0 0 | N * * * x4/3x . x ♦ 16 | 8 8 0 8 | 2 0 4 0 4 0 | * 3N * * x . x4/3x ♦ 16 | 8 0 8 8 | 0 4 4 0 0 2 | * * 3N * . x3x4/3x ♦ 48 | 0 24 24 24 | 0 0 0 8 12 6 | * * * N
or . . . . | 24N | 2 2 | 2 2 1 1 | 2 2 ---------------+-----+---------+--------------+----- x . . . & | 2 | 24N * | 1 1 1 0 | 1 2 . x . . & | 2 | * 24N | 1 1 0 1 | 2 1 ---------------+-----+---------+--------------+----- x4/3x . . & | 8 | 4 4 | 6N * * * | 1 1 x . x . & | 4 | 2 2 | * 12N * * | 1 1 x . . x | 4 | 4 0 | * * 6N * | 0 2 . x3x . | 6 | 0 6 | * * * 4N | 2 0 ---------------+-----+---------+--------------+----- x4/3x3x . & ♦ 48 | 24 48 | 6 12 0 8 | N * x4/3x . x & ♦ 16 | 16 8 | 2 4 4 0 | * 3N
© 2004-2025 | top of page |