Acronym ...
Name para bi lowered truncated cube
 
   
Circumradius ...
Vertex figure [4,h,H], [4,6,H]
Dihedral angles
(at margins)
  • between {4} and {(h,H,H)2} (at hH):   135°
  • between {4} and {6}:   arccos(-1/sqrt(3)) = 125.264390°
  • between {6} and {(h,H,H)2}:   arccos(-1/sqrt(3)) = 125.264390°
  • between {4} and {(h,H,H)2} (at HH):   90°
  • between {(h,H,H)2} and {(h,H,H)2}:   90°

The non-regular hexagons {(h,H,H)2} are diagonally elongated squares. Its vertex angles are h = 90° resp. H = 135°.


Incidence matrix according to Dynkin symbol

xwxx3xxwx&#xt   → height(1,2) = height(2,3) = height(3,4) = 1/sqrt(3) = 0.577350

o...3o...     | 6 * * * | 1 1 1 0 0 0 0 0 0 | 1 1 1 0 0 0  [4,6,H]
.o..3.o..     | * 6 * * | 0 0 1 1 1 0 0 0 0 | 0 1 1 1 0 0  [4,h,H]
..o.3..o.     | * * 6 * | 0 0 0 0 1 1 1 0 0 | 0 1 0 1 1 0  [4,h,H]
...o3...o     | * * * 6 | 0 0 0 0 0 0 1 1 1 | 0 0 0 1 1 1  [4,6,H]
--------------+---------+-------------------+------------
x... ....     | 2 0 0 0 | 3 * * * * * * * * | 1 1 0 0 0 0
.... x...     | 2 0 0 0 | * 3 * * * * * * * | 1 0 1 0 0 0
oo..3oo..&#x  | 1 1 0 0 | * * 6 * * * * * * | 0 1 1 0 0 0
.... .x..     | 0 2 0 0 | * * * 3 * * * * * | 0 0 1 1 0 0
.oo.3.oo.&#x  | 0 1 1 0 | * * * * 6 * * * * | 0 1 0 1 0 0
..x. ....     | 0 0 2 0 | * * * * * 3 * * * | 0 1 0 0 1 0
..oo3..oo&#x  | 0 0 1 1 | * * * * * * 6 * * | 0 0 0 1 1 0
...x ....     | 0 0 0 2 | * * * * * * * 3 * | 0 0 0 0 1 1
.... ...x     | 0 0 0 2 | * * * * * * * * 3 | 0 0 0 1 0 1
--------------+---------+-------------------+------------
x...3x...     | 6 0 0 0 | 3 3 0 0 0 0 0 0 0 | 1 * * * * *
xwx. ....&#xt | 2 2 2 0 | 1 0 2 0 2 1 0 0 0 | * 3 * * * *  {(h,H,H)2}
.... xx..&#x  | 2 2 0 0 | 0 1 2 1 0 0 0 0 0 | * * 3 * * *
.... .xwx&#xt | 0 2 2 2 | 0 0 0 1 2 0 2 0 1 | * * * 3 * *  {(h,H,H)2}
..xx ....&#x  | 0 0 2 2 | 0 0 0 0 0 1 2 1 0 | * * * * 3 *
...x3...x     | 0 0 0 6 | 0 0 0 0 0 0 0 3 3 | * * * * * 1
or
o...3o...     & | 12  * | 1 1  1 0 0 | 1 1 1  [4,6,H]
.o..3.o..     & |  * 12 | 0 0  1 1 1 | 0 2 1  [4,h,H]
----------------+-------+------------+------
x... ....     & |  2  0 | 6 *  * * * | 1 1 0
.... x...     & |  2  0 | * 6  * * * | 1 0 1
oo..3oo..&#x  & |  1  1 | * * 12 * * | 0 1 1
.... .x..     & |  0  2 | * *  * 6 * | 0 1 1
.oo.3.oo.&#x    |  0  2 | * *  * * 6 | 0 1 1
----------------+-------+------------+------
x...3x...     & |  6  0 | 3 3  0 0 0 | 2 * *
xwx. ....&#xt & |  2  4 | 1 0  2 1 2 | * 6 *  {(h,H,H)2}
.... xx..&#x  & |  2  2 | 0 1  2 1 0 | * * 6

© 2004-2019
top of page