Acronym otwadip Name octagon - dodecagon duoprism Circumradius sqrt[(6+sqrt(2)+2 sqrt(3))/2] = 2.332200 General of army (is itself convex) Colonel of regiment (is itself locally convex) Dihedral angles at {8} between op and op:   150° at {12} between twip and twip:   135° at {4} between op and twip:   90° Confer general duoprisms: n,m-dip   2n,m-dip   2n,2m-dip   8,n-dip   12,n-dip

Incidence matrix according to Dynkin symbol

```x8o x12o

. . .  . | 96 |  2  2 |  1  4 1 |  2 2
---------+----+-------+---------+-----
x . .  . |  2 | 96  * |  1  2 0 |  2 1
. . x  . |  2 |  * 96 |  0  2 1 |  1 2
---------+----+-------+---------+-----
x8o .  . |  8 |  8  0 | 12  * * |  2 0
x . x  . |  4 |  2  2 |  * 96 * |  1 1
. . x12o | 12 |  0 12 |  *  * 8 |  0 2
---------+----+-------+---------+-----
x8o x  . ♦ 16 | 16  8 |  2  8 0 | 12 *
x . x12o ♦ 24 | 12 24 |  0 12 2 |  * 8
```

```x8o x12/11o

. . .     . | 96 |  2  2 |  1  4 1 |  2 2
------------+----+-------+---------+-----
x . .     . |  2 | 96  * |  1  2 0 |  2 1
. . x     . |  2 |  * 96 |  0  2 1 |  1 2
------------+----+-------+---------+-----
x8o .     . |  8 |  8  0 | 12  * * |  2 0
x . x     . |  4 |  2  2 |  * 96 * |  1 1
. . x12/11o | 12 |  0 12 |  *  * 8 |  0 2
------------+----+-------+---------+-----
x8o x     . ♦ 16 | 16  8 |  2  8 0 | 12 *
x . x12/11o ♦ 24 | 12 24 |  0 12 2 |  * 8
```

```x8/7o x12o

.   . .  . | 96 |  2  2 |  1  4 1 |  2 2
-----------+----+-------+---------+-----
x   . .  . |  2 | 96  * |  1  2 0 |  2 1
.   . x  . |  2 |  * 96 |  0  2 1 |  1 2
-----------+----+-------+---------+-----
x8/7o .  . |  8 |  8  0 | 12  * * |  2 0
x   . x  . |  4 |  2  2 |  * 96 * |  1 1
.   . x12o | 12 |  0 12 |  *  * 8 |  0 2
-----------+----+-------+---------+-----
x8/7o x  . ♦ 16 | 16  8 |  2  8 0 | 12 *
x   . x12o ♦ 24 | 12 24 |  0 12 2 |  * 8
```

```x8/7o x12/11o

.   . .     . | 96 |  2  2 |  1  4 1 |  2 2
--------------+----+-------+---------+-----
x   . .     . |  2 | 96  * |  1  2 0 |  2 1
.   . x     . |  2 |  * 96 |  0  2 1 |  1 2
--------------+----+-------+---------+-----
x8/7o .     . |  8 |  8  0 | 12  * * |  2 0
x   . x     . |  4 |  2  2 |  * 96 * |  1 1
.   . x12/11o | 12 |  0 12 |  *  * 8 |  0 2
--------------+----+-------+---------+-----
x8/7o x     . ♦ 16 | 16  8 |  2  8 0 | 12 *
x   . x12/11o ♦ 24 | 12 24 |  0 12 2 |  * 8
```

```x4x x12o

. . .  . | 96 |  1  1  2 |  1  2  2 1 |  2 1 1
---------+----+----------+------------+-------
x . .  . |  2 | 48  *  * |  1  2  0 0 |  2 1 0
. x .  . |  2 |  * 48  * |  1  0  2 0 |  2 0 1
. . x  . |  2 |  *  * 96 |  0  1  1 1 |  1 1 1
---------+----+----------+------------+-------
x4x .  . |  8 |  4  4  0 | 12  *  * * |  2 0 0
x . x  . |  4 |  2  0  2 |  * 48  * * |  1 1 0
. x x  . |  4 |  0  2  2 |  *  * 48 * |  1 0 1
. . x12o | 12 |  0  0 12 |  *  *  * 8 |  0 1 1
---------+----+----------+------------+-------
x4x x  . ♦ 16 |  8  8  8 |  2  4  4 0 | 12 * *
x . x12o ♦ 24 | 12  0 24 |  0 12  0 2 |  * 4 *
. x x12o ♦ 24 |  0 12 24 |  0  0 12 2 |  * * 4
```

```x4x x12/11o

. . .     . | 96 |  1  1  2 |  1  2  2 1 |  2 1 1
------------+----+----------+------------+-------
x . .     . |  2 | 48  *  * |  1  2  0 0 |  2 1 0
. x .     . |  2 |  * 48  * |  1  0  2 0 |  2 0 1
. . x     . |  2 |  *  * 96 |  0  1  1 1 |  1 1 1
------------+----+----------+------------+-------
x4x .     . |  8 |  4  4  0 | 12  *  * * |  2 0 0
x . x     . |  4 |  2  0  2 |  * 48  * * |  1 1 0
. x x     . |  4 |  0  2  2 |  *  * 48 * |  1 0 1
. . x12/11o | 12 |  0  0 12 |  *  *  * 8 |  0 1 1
------------+----+----------+------------+-------
x4x x     . ♦ 16 |  8  8  8 |  2  4  4 0 | 12 * *
x . x12/11o ♦ 24 | 12  0 24 |  0 12  0 2 |  * 4 *
. x x12/11o ♦ 24 |  0 12 24 |  0  0 12 2 |  * * 4
```

```x8o x6x

. . . . | 96 |  2  1  1 |  1  2  2 1 | 1 1 2
--------+----+----------+------------+------
x . . . |  2 | 96  *  * |  1  1  1 0 | 1 1 1
. . x . |  2 |  * 48  * |  0  2  0 1 | 1 0 2
. . . x |  2 |  *  * 48 |  0  0  2 1 | 0 1 2
--------+----+----------+------------+------
x8o . . |  8 |  8  0  0 | 12  *  * * | 1 1 0
x . x . |  4 |  2  2  0 |  * 48  * * | 1 0 1
x . . x |  4 |  2  0  2 |  *  * 48 * | 0 1 1
. . x6x | 12 |  0  6  6 |  *  *  * 8 | 0 0 2
--------+----+----------+------------+------
x8o x . ♦ 16 | 162  8  0 |  2  8  0 0 | 6 * *
x8o . x ♦ 16 | 16  0  8 |  2  0  8 0 | * 6 *
x . x6x ♦ 24 | 12 12 12 |  0  6  6 2 | * * 8
```

```x8/7o x6x

.   . . . | 96 |  2  1  1 |  1  2  2 1 | 1 1 2
----------+----+----------+------------+------
x   . . . |  2 | 96  *  * |  1  1  1 0 | 1 1 1
.   . x . |  2 |  * 48  * |  0  2  0 1 | 1 0 2
.   . . x |  2 |  *  * 48 |  0  0  2 1 | 0 1 2
----------+----+----------+------------+------
x8/7o . . |  8 |  8  0  0 | 12  *  * * | 1 1 0
x   . x . |  4 |  2  2  0 |  * 48  * * | 1 0 1
x   . . x |  4 |  2  0  2 |  *  * 48 * | 0 1 1
.   . x6x | 12 |  0  6  6 |  *  *  * 8 | 0 0 2
----------+----+----------+------------+------
x8/7o x . ♦ 16 | 16  8  0 |  2  8  0 0 | 6 * *
x8/7o . x ♦ 16 | 16  0  8 |  2  0  8 0 | * 6 *
x   . x6x ♦ 24 | 12 12 12 |  0  6  6 2 | * * 8
```

```x4x x6x

. . . . | 96 |  1  1  1  1 |  1  1  1  1  1 1 | 1 1 1 1
--------+----+-------------+------------------+--------
x . . . |  2 | 48  *  *  * |  1  1  1  0  0 0 | 1 1 1 0
. x . . |  2 |  * 48  *  * |  1  0  0  1  1 0 | 1 1 0 1
. . x . |  2 |  *  * 48  * |  0  1  0  1  0 1 | 1 0 1 1
. . . x |  2 |  *  *  * 48 |  0  0  1  0  1 1 | 0 1 1 1
--------+----+-------------+------------------+--------
x4x . . |  6 |  3  3  0  0 | 12  *  *  *  * * | 1 1 0 0
x . x . |  4 |  2  0  2  0 |  * 24  *  *  * * | 1 0 1 0
x . . x |  4 |  2  0  0  2 |  *  * 24  *  * * | 0 1 1 0
. x x . |  4 |  0  2  2  0 |  *  *  * 24  * * | 1 0 0 1
. x . x |  4 |  0  2  0  2 |  *  *  *  * 24 * | 0 1 0 1
. . x6x | 12 |  0  0  6  6 |  *  *  *  *  * 8 | 0 0 1 1
--------+----+-------------+------------------+--------
x4x x . ♦ 16 |  8  8  8  0 |  2  4  0  4  0 0 | 6 * * *
x4x . x ♦ 16 |  8  8  0  8 |  2  0  4  0  4 0 | * 6 * *
x . x6x ♦ 24 | 12  0 12 12 |  0  6  6  0  0 2 | * * 4 *
. x x6x ♦ 24 |  0 12 12 12 |  0  0  0  6  6 2 | * * * 4
```