Acronym | otwadip |
Name | octagon - dodecagon duoprism |
Circumradius | sqrt[(6+sqrt(2)+2 sqrt(3))/2] = 2.332200 |
General of army | (is itself convex) |
Colonel of regiment | (is itself locally convex) |
Dihedral angles | |
Face vector | 96, 192, 116, 20 |
Confer |
Incidence matrix according to Dynkin symbol
x8o x12o . . . . | 96 | 2 2 | 1 4 1 | 2 2 ---------+----+-------+---------+----- x . . . | 2 | 96 * | 1 2 0 | 2 1 . . x . | 2 | * 96 | 0 2 1 | 1 2 ---------+----+-------+---------+----- x8o . . | 8 | 8 0 | 12 * * | 2 0 x . x . | 4 | 2 2 | * 96 * | 1 1 . . x12o | 12 | 0 12 | * * 8 | 0 2 ---------+----+-------+---------+----- x8o x . ♦ 16 | 16 8 | 2 8 0 | 12 * x . x12o ♦ 24 | 12 24 | 0 12 2 | * 8
x8o x12/11o . . . . | 96 | 2 2 | 1 4 1 | 2 2 ------------+----+-------+---------+----- x . . . | 2 | 96 * | 1 2 0 | 2 1 . . x . | 2 | * 96 | 0 2 1 | 1 2 ------------+----+-------+---------+----- x8o . . | 8 | 8 0 | 12 * * | 2 0 x . x . | 4 | 2 2 | * 96 * | 1 1 . . x12/11o | 12 | 0 12 | * * 8 | 0 2 ------------+----+-------+---------+----- x8o x . ♦ 16 | 16 8 | 2 8 0 | 12 * x . x12/11o ♦ 24 | 12 24 | 0 12 2 | * 8
x8/7o x12o . . . . | 96 | 2 2 | 1 4 1 | 2 2 -----------+----+-------+---------+----- x . . . | 2 | 96 * | 1 2 0 | 2 1 . . x . | 2 | * 96 | 0 2 1 | 1 2 -----------+----+-------+---------+----- x8/7o . . | 8 | 8 0 | 12 * * | 2 0 x . x . | 4 | 2 2 | * 96 * | 1 1 . . x12o | 12 | 0 12 | * * 8 | 0 2 -----------+----+-------+---------+----- x8/7o x . ♦ 16 | 16 8 | 2 8 0 | 12 * x . x12o ♦ 24 | 12 24 | 0 12 2 | * 8
x8/7o x12/11o . . . . | 96 | 2 2 | 1 4 1 | 2 2 --------------+----+-------+---------+----- x . . . | 2 | 96 * | 1 2 0 | 2 1 . . x . | 2 | * 96 | 0 2 1 | 1 2 --------------+----+-------+---------+----- x8/7o . . | 8 | 8 0 | 12 * * | 2 0 x . x . | 4 | 2 2 | * 96 * | 1 1 . . x12/11o | 12 | 0 12 | * * 8 | 0 2 --------------+----+-------+---------+----- x8/7o x . ♦ 16 | 16 8 | 2 8 0 | 12 * x . x12/11o ♦ 24 | 12 24 | 0 12 2 | * 8
x4x x12o . . . . | 96 | 1 1 2 | 1 2 2 1 | 2 1 1 ---------+----+----------+------------+------- x . . . | 2 | 48 * * | 1 2 0 0 | 2 1 0 . x . . | 2 | * 48 * | 1 0 2 0 | 2 0 1 . . x . | 2 | * * 96 | 0 1 1 1 | 1 1 1 ---------+----+----------+------------+------- x4x . . | 8 | 4 4 0 | 12 * * * | 2 0 0 x . x . | 4 | 2 0 2 | * 48 * * | 1 1 0 . x x . | 4 | 0 2 2 | * * 48 * | 1 0 1 . . x12o | 12 | 0 0 12 | * * * 8 | 0 1 1 ---------+----+----------+------------+------- x4x x . ♦ 16 | 8 8 8 | 2 4 4 0 | 12 * * x . x12o ♦ 24 | 12 0 24 | 0 12 0 2 | * 4 * . x x12o ♦ 24 | 0 12 24 | 0 0 12 2 | * * 4
x4x x12/11o . . . . | 96 | 1 1 2 | 1 2 2 1 | 2 1 1 ------------+----+----------+------------+------- x . . . | 2 | 48 * * | 1 2 0 0 | 2 1 0 . x . . | 2 | * 48 * | 1 0 2 0 | 2 0 1 . . x . | 2 | * * 96 | 0 1 1 1 | 1 1 1 ------------+----+----------+------------+------- x4x . . | 8 | 4 4 0 | 12 * * * | 2 0 0 x . x . | 4 | 2 0 2 | * 48 * * | 1 1 0 . x x . | 4 | 0 2 2 | * * 48 * | 1 0 1 . . x12/11o | 12 | 0 0 12 | * * * 8 | 0 1 1 ------------+----+----------+------------+------- x4x x . ♦ 16 | 8 8 8 | 2 4 4 0 | 12 * * x . x12/11o ♦ 24 | 12 0 24 | 0 12 0 2 | * 4 * . x x12/11o ♦ 24 | 0 12 24 | 0 0 12 2 | * * 4
x8o x6x . . . . | 96 | 2 1 1 | 1 2 2 1 | 1 1 2 --------+----+----------+------------+------ x . . . | 2 | 96 * * | 1 1 1 0 | 1 1 1 . . x . | 2 | * 48 * | 0 2 0 1 | 1 0 2 . . . x | 2 | * * 48 | 0 0 2 1 | 0 1 2 --------+----+----------+------------+------ x8o . . | 8 | 8 0 0 | 12 * * * | 1 1 0 x . x . | 4 | 2 2 0 | * 48 * * | 1 0 1 x . . x | 4 | 2 0 2 | * * 48 * | 0 1 1 . . x6x | 12 | 0 6 6 | * * * 8 | 0 0 2 --------+----+----------+------------+------ x8o x . ♦ 16 | 162 8 0 | 2 8 0 0 | 6 * * x8o . x ♦ 16 | 16 0 8 | 2 0 8 0 | * 6 * x . x6x ♦ 24 | 12 12 12 | 0 6 6 2 | * * 8
x8/7o x6x . . . . | 96 | 2 1 1 | 1 2 2 1 | 1 1 2 ----------+----+----------+------------+------ x . . . | 2 | 96 * * | 1 1 1 0 | 1 1 1 . . x . | 2 | * 48 * | 0 2 0 1 | 1 0 2 . . . x | 2 | * * 48 | 0 0 2 1 | 0 1 2 ----------+----+----------+------------+------ x8/7o . . | 8 | 8 0 0 | 12 * * * | 1 1 0 x . x . | 4 | 2 2 0 | * 48 * * | 1 0 1 x . . x | 4 | 2 0 2 | * * 48 * | 0 1 1 . . x6x | 12 | 0 6 6 | * * * 8 | 0 0 2 ----------+----+----------+------------+------ x8/7o x . ♦ 16 | 16 8 0 | 2 8 0 0 | 6 * * x8/7o . x ♦ 16 | 16 0 8 | 2 0 8 0 | * 6 * x . x6x ♦ 24 | 12 12 12 | 0 6 6 2 | * * 8
x4x x6x . . . . | 96 | 1 1 1 1 | 1 1 1 1 1 1 | 1 1 1 1 --------+----+-------------+------------------+-------- x . . . | 2 | 48 * * * | 1 1 1 0 0 0 | 1 1 1 0 . x . . | 2 | * 48 * * | 1 0 0 1 1 0 | 1 1 0 1 . . x . | 2 | * * 48 * | 0 1 0 1 0 1 | 1 0 1 1 . . . x | 2 | * * * 48 | 0 0 1 0 1 1 | 0 1 1 1 --------+----+-------------+------------------+-------- x4x . . | 6 | 3 3 0 0 | 12 * * * * * | 1 1 0 0 x . x . | 4 | 2 0 2 0 | * 24 * * * * | 1 0 1 0 x . . x | 4 | 2 0 0 2 | * * 24 * * * | 0 1 1 0 . x x . | 4 | 0 2 2 0 | * * * 24 * * | 1 0 0 1 . x . x | 4 | 0 2 0 2 | * * * * 24 * | 0 1 0 1 . . x6x | 12 | 0 0 6 6 | * * * * * 8 | 0 0 1 1 --------+----+-------------+------------------+-------- x4x x . ♦ 16 | 8 8 8 0 | 2 4 0 4 0 0 | 6 * * * x4x . x ♦ 16 | 8 8 0 8 | 2 0 4 0 4 0 | * 6 * * x . x6x ♦ 24 | 12 0 12 12 | 0 6 6 0 0 2 | * * 4 * . x x6x ♦ 24 | 0 12 12 12 | 0 0 0 6 6 2 | * * * 4
© 2004-2025 | top of page |