Acronym | ... |
Name | o5x3o5β (?) |
Circumradius | ... |
This hyperbolic honeycomb is obtained by alternated holo-faceting as alternation of the ids. When starting directly from o5x3o5x mere faceting results in a non-uniform variant. Whereas, when starting from its o5x3o5v variant instead, mere faceting would result indeed in a corresponding uniform holosnub!
Incidence matrix according to Dynkin symbol
o5x3o5β (N → ∞) both( . . . . ) | 60N | 4 2 | 2 2 1 4 | 1 2 2 ----------------+-----+----------+-----------------+--------- both( . x . . ) | 2 | 120N * | 1 1 0 1 | 1 1 1 sefa( . . o5β ) | 2 | * 60N | 0 0 1 2 | 0 2 1 ----------------+-----+----------+-----------------+--------- both( o5x . . ) | 5 | 5 0 | 24N * * * | 1 0 1 both( . x3o . ) | 3 | 3 0 | * 40N * * | 1 1 0 . . o5β ♦ 5 | 0 5 | * * 12N * | 0 2 0 sefa( . x3o5β ) | 6 | 3 3 | * * * 40N | 0 1 1 ----------------+-----+----------+-----------------+--------- both( o5x3o . ) ♦ 30 | 60 0 | 12 20 0 0 | 2N * * . x3o5β ♦ 60 | 60 60 | 0 20 12 20 | * 2N * sefa( o5x3o5β ) ♦ 60 | 60 30 | 12 0 0 20 | * * 2N starting figure: o5x3o5x
© 2004-2025 | top of page |