Acronym | ... |
Name | lamina-truncate of hyperbolic x4x3o8o tesselation |
Circumradius | sqrt[-1/sqrt(8)] = 0.594604 i |
Vertex figure | oxo8ooo&#kt |
Confer |
|
As the order 8 triangle tiling within x4x3o8o were hemi-choral (have same curvature resp. intersect the sphere of infinity orthogonally), those could be replaced by mirror images of the remainder each. This transforms the hypercompact honeycomb back into a compact one, a still uniform lamina-truncate, with tics only.
Incidence matrix according to Dynkin symbol
lamina-truncate( x4x3o8o ) (N → ∞) . . . . | 3N | 2 8 | 16 8 | 16 --------+----+--------+-------+--- x . . . | 2 | 3N * | 8 0 | 8 . x . . | 2 | * 12N | 2 2 | 4 --------+----+--------+-------+--- x4x . . | 8 | 4 4 | 6N * | 2 . x3o . | 3 | 0 3 | * 8N | 2 --------+----+--------+-------+--- x4x3o . ♦ 24 | 12 24 | 6 8 | 2N
o8o3x4xØx4*c (N → ∞) . . . . . | 6N | 8 1 1 | 8 8 8 | 8 8 -------------+----+-----------+-----------+------ . . x . . | 2 | 24N * * | 2 1 1 | 2 2 . . . x . | 2 | * 3N * | 0 8 0 | 8 0 . . . . x | 2 | * * 3N | 0 0 8 | 0 8 -------------+----+-----------+-----------+------ . o3x . . | 3 | 3 0 0 | 16N * * | 1 1 . . x4x . | 8 | 4 4 0 | * 6N * | 2 0 . . x . x4*c | 8 | 4 0 4 | * * 6N | 0 2 -------------+----+-----------+-----------+------ . o3x4x . ♦ 24 | 24 12 0 | 8 6 0 | 2N * . o3x . x4*c ♦ 24 | 24 0 12 | 8 0 6 | * 2N
© 2004-2024 | top of page |