Acronym ... Name lamina-truncate of hyperbolic x3x4x338o tesselation Circumradius sqrt[-(4+7 sqrt(2))]/2 = 1.864101 i Confer uniform relative: x3x4x3x8o

This hypercompact hyperbolic tesselation uses the truncated order 8 triangle tiling (totrat) in the sense of an infinite bollohedron as one of its cell types. Further it uses its prism (totratip) in the sense of an infinite bollochoron alike.

Incidence matrix according to Dynkin symbol

```lamina-truncate( x3x4x3x8o )   (N,M → ∞)

. . . . . | 288NM |     2     1     1     2 |    2     2     4    1     2    2    1 |    2    4    4    2    2    1   1 |  4    2   2
----------+-------+-------------------------+---------------------------------------+-----------------------------------+------------
x . . . . |     2 | 288NM     *     *     * |    1     1     2    0     0    0    0 |    1    2    2    1    0    0   0 |  2    1   1
. x . . . |     2 |     * 144NM     *     * |    2     0     0    1     2    0    0 |    2    4    0    0    2    1   0 |  4    2   0
. . x . . |     2 |     *     * 144NM     * |    0     2     0    1     0    2    0 |    2    0    4    0    2    0   1 |  4    0   2
. . . x . |     2 |     *     *     * 288NM |    0     0     2    0     1    1    1 |    0    2    2    2    1    1   1 |  2    2   2
----------+-------+-------------------------+---------------------------------------+-----------------------------------+------------
x3x . . . |     6 |     3     3     0     0 | 96NM     *     *    *     *    *    * |    1    2    0    0    0    0   0 |  2    1   0
x . x . . |     4 |     2     0     2     0 |    * 144NM     *    *     *    *    * |    1    0    2    0    0    0   0 |  2    0   1
x . . x . |     4 |     2     0     0     2 |    *     * 288NM    *     *    *    * |    0    1    1    1    0    0   0 |  1    1   1
. x4x . . |     8 |     0     4     4     0 |    *     *     * 36NM     *    *    * |    2    0    0    0    2    0   0 |  4    0   0
. x . x . |     4 |     0     2     0     2 |    *     *     *    * 144NM    *    * |    0    2    0    0    1    1   0 |  2    2   0
. . x3x . |     6 |     0     0     3     3 |    *     *     *    *     * 96NM    * |    0    0    2    0    1    0   1 |  2    0   2
. . . x8o |     8 |     0     0     0     8 |    *     *     *    *     *    * 36NM |    0    0    0    2    0    1   1 |  0    2   2
----------+-------+-------------------------+---------------------------------------+-----------------------------------+------------
x3x4x . . ♦    48 |    24    24    24     0 |    8    12     0    6     0    0    0 | 12NM    *    *    *    *    *   * |  2    0   0
x3x . x . ♦    12 |     6     6     0     6 |    2     0     3    0     3    0    0 |    * 96NM    *    *    *    *   * |  1    1   0
x . x3x . ♦    12 |     6     0     6     6 |    0     3     3    0     0    2    0 |    *    * 96NM    *    *    *   * |  1    0   1
x . . x8o ♦    16 |     8     0     0    16 |    0     0     8    0     0    0    2 |    *    *    * 36NM    *    *   * |  0    1   1
. x4x3x . ♦    48 |     0    24    24    24 |    0     0     0    6    12    8    0 |    *    *    *    * 12NM    *   * |  2    0   0
. x . x8o ♦    16 |     0     8     0    16 |    0     0     0    0     8    0    2 |    *    *    *    *    * 18NM   * |  0    2   0
. . x3x8o ♦   24M |     0     0   12M   24M |    0     0     0    0     0   8M   3M |    *    *    *    *    *    * 12N |  0    0   2
----------+-------+-------------------------+---------------------------------------+-----------------------------------+------------
x3x4x3x . ♦  1152 |   576   576   576   576 |  192   288   288  144   288  192    0 |   24   96   96    0   24    0   0 | NM    *   *
x3x . x8o ♦    48 |    24    24     0    48 |    8     0    24    0    24    0    6 |    0    8    0    3    0    3   0 |  * 12NM   *
x . x3x8o ♦   48M |   24M     0   24M   48M |    0   12M   24M    0     0  16M   6M |    0    0   8M   3M    0    0   2 |  *    * 12N
```