Acronym ...
Name lamina-truncate of hyperbolic x3x4x338o tesselation
Circumradius sqrt[-(4+7 sqrt(2))]/2 = 1.864101 i
Confer
uniform relative:
x3x4x3x8o  

This hypercompact hyperbolic tesselation uses the truncated order 8 triangle tiling (totrat) in the sense of an infinite bollohedron as one of its cell types. Further it uses its prism (totratip) in the sense of an infinite bollochoron alike.

Note that the also bollochoral x4x3x8o of x3x4x3x8o in here are used as additional mirrors, so that this becomes a still uniform lamina-truncate.


Incidence matrix according to Dynkin symbol

lamina-truncate( x3x4x3x8o )   (N,M → ∞)

. . . . . | 288NM |     2     1     1     2 |    2     2     4    1     2    2    1 |    2    4    4    2    2    1   1 |  4    2   2
----------+-------+-------------------------+---------------------------------------+-----------------------------------+------------
x . . . . |     2 | 288NM     *     *     * |    1     1     2    0     0    0    0 |    1    2    2    1    0    0   0 |  2    1   1
. x . . . |     2 |     * 144NM     *     * |    2     0     0    1     2    0    0 |    2    4    0    0    2    1   0 |  4    2   0
. . x . . |     2 |     *     * 144NM     * |    0     2     0    1     0    2    0 |    2    0    4    0    2    0   1 |  4    0   2
. . . x . |     2 |     *     *     * 288NM |    0     0     2    0     1    1    1 |    0    2    2    2    1    1   1 |  2    2   2
----------+-------+-------------------------+---------------------------------------+-----------------------------------+------------
x3x . . . |     6 |     3     3     0     0 | 96NM     *     *    *     *    *    * |    1    2    0    0    0    0   0 |  2    1   0
x . x . . |     4 |     2     0     2     0 |    * 144NM     *    *     *    *    * |    1    0    2    0    0    0   0 |  2    0   1
x . . x . |     4 |     2     0     0     2 |    *     * 288NM    *     *    *    * |    0    1    1    1    0    0   0 |  1    1   1
. x4x . . |     8 |     0     4     4     0 |    *     *     * 36NM     *    *    * |    2    0    0    0    2    0   0 |  4    0   0
. x . x . |     4 |     0     2     0     2 |    *     *     *    * 144NM    *    * |    0    2    0    0    1    1   0 |  2    2   0
. . x3x . |     6 |     0     0     3     3 |    *     *     *    *     * 96NM    * |    0    0    2    0    1    0   1 |  2    0   2
. . . x8o |     8 |     0     0     0     8 |    *     *     *    *     *    * 36NM |    0    0    0    2    0    1   1 |  0    2   2
----------+-------+-------------------------+---------------------------------------+-----------------------------------+------------
x3x4x . .     48 |    24    24    24     0 |    8    12     0    6     0    0    0 | 12NM    *    *    *    *    *   * |  2    0   0
x3x . x .     12 |     6     6     0     6 |    2     0     3    0     3    0    0 |    * 96NM    *    *    *    *   * |  1    1   0
x . x3x .     12 |     6     0     6     6 |    0     3     3    0     0    2    0 |    *    * 96NM    *    *    *   * |  1    0   1
x . . x8o     16 |     8     0     0    16 |    0     0     8    0     0    0    2 |    *    *    * 36NM    *    *   * |  0    1   1
. x4x3x .     48 |     0    24    24    24 |    0     0     0    6    12    8    0 |    *    *    *    * 12NM    *   * |  2    0   0
. x . x8o     16 |     0     8     0    16 |    0     0     0    0     8    0    2 |    *    *    *    *    * 18NM   * |  0    2   0
. . x3x8o    24M |     0     0   12M   24M |    0     0     0    0     0   8M   3M |    *    *    *    *    *    * 12N |  0    0   2
----------+-------+-------------------------+---------------------------------------+-----------------------------------+------------
x3x4x3x .   1152 |   576   576   576   576 |  192   288   288  144   288  192    0 |   24   96   96    0   24    0   0 | NM    *   *
x3x . x8o     48 |    24    24     0    48 |    8     0    24    0    24    0    6 |    0    8    0    3    0    3   0 |  * 12NM   *
x . x3x8o    48M |   24M     0   24M   48M |    0   12M   24M    0     0  16M   6M |    0    0   8M   3M    0    0   2 |  *    * 12N

© 2004-2024
top of page