Acronym | hibbit |
Name |
hexagonal biprismated tetracomb, hexagonal duoprismatic tetracomb, hexagonal tiling duocomb, Voronoi complex of bihexagonal lattice A2×A2 |
Confer |
|
External links |
Incidence matrix according to Dynkin symbol
o3o6x o3o6x (N → ∞) . . . . . . | 4N | 3 3 | 3 9 3 | 9 9 | 9 ------------+----+-------+----------+-------+-- . . x . . . | 2 | 6N * | 2 3 0 | 6 3 | 6 . . . . . x | 2 | * 6N | 0 3 2 | 3 6 | 6 ------------+----+-------+----------+-------+-- . o6x . . . | 6 | 6 0 | 2N * * | 3 0 | 3 . . x . . x | 4 | 2 2 | * 9N * | 2 2 | 4 . . . . o6x | 6 | 0 6 | * * 2N | 0 3 | 3 ------------+----+-------+----------+-------+-- . o6x . . x ♦ 12 | 12 6 | 2 6 0 | 3N * | 2 . . x . o6x ♦ 12 | 6 12 | 0 6 2 | * 3N | 2 ------------+----+-------+----------+-------+-- . o6x . o6x ♦ 36 | 36 36 | 6 36 6 | 6 6 | N
or . . . . . . | 4N | 6 | 6 9 | 18 | 9 ---------------+----+-----+-------+----+-- . . x . . . & | 2 | 12N | 2 3 | 9 | 6 ---------------+----+-----+-------+----+-- . o6x . . . & | 6 | 6 | 4N * | 3 | 3 . . x . . x | 4 | 4 | * 9N | 4 | 4 ---------------+----+-----+-------+----+-- . o6x . . x & ♦ 12 | 18 | 2 6 | 6N | 2 ---------------+----+-----+-------+----+-- . o6x . o6x ♦ 36 | 72 | 12 36 | 12 | N
o3o6x x3x6o (N → ∞) . . . . . . | 12N | 3 1 2 | 3 3 6 2 1 | 3 6 6 3 | 6 3 ------------+-----+------------+-----------------+-------------+----- . . x . . . | 2 | 18N * * | 2 1 2 0 0 | 2 4 2 1 | 4 2 . . . x . . | 2 | * 6N * | 0 3 0 2 0 | 3 0 6 0 | 6 0 . . . . x . | 2 | * * 12N | 0 0 3 1 1 | 0 3 3 3 | 3 3 ------------+-----+------------+-----------------+-------------+----- . o6x . . . | 6 | 6 0 0 | 6N * * * * | 1 2 0 0 | 2 1 . . x x . . | 4 | 2 2 0 | * 9N * * * | 2 0 2 0 | 4 0 . . x . x . | 4 | 2 0 2 | * * 18N * * | 0 2 1 1 | 2 2 . . . x3x . | 6 | 0 3 3 | * * * 4N * | 0 0 3 0 | 3 0 . . . . x6o | 6 | 0 0 6 | * * * * 2N | 0 0 0 3 | 0 3 ------------+-----+------------+-----------------+-------------+----- . o6x x . . ♦ 12 | 12 6 0 | 2 6 0 0 0 | 3N * * * | 2 0 . o6x . x . ♦ 12 | 12 0 6 | 2 0 6 0 0 | * 6N * * | 1 1 . . x x3x . ♦ 12 | 6 6 6 | 0 3 3 2 0 | * * 6N * | 2 0 . . x . x6o ♦ 12 | 6 0 12 | 0 0 6 0 2 | * * * 3N | 0 2 ------------+-----+------------+-----------------+-------------+----- . o6x x3x . ♦ 36 | 36 18 18 | 6 18 18 6 0 | 3 3 6 0 | 2N * . o6x . x6o ♦ 36 | 36 0 36 | 6 0 36 0 6 | 0 6 0 6 | * N
x3x6o x3x6o (N → ∞) . . . . . . | 36N | 1 2 1 2 | 2 1 2 1 2 4 2 1 | 2 4 2 1 1 2 4 2 | 4 2 2 1 ------------+-----+-----------------+------------------------------+---------------------------+----------- x . . . . . | 2 | 18N * * * | 2 1 2 0 0 0 0 0 | 2 4 2 1 0 0 0 0 | 4 2 0 0 . x . . . . | 2 | * 36N * * | 1 0 0 1 1 2 0 0 | 1 2 0 0 1 2 2 1 | 2 1 2 1 . . . x . . | 2 | * * 18N * | 0 1 0 0 2 0 2 0 | 2 0 2 0 1 0 4 0 | 4 0 2 0 . . . . x . | 2 | * * * 36N | 0 0 1 0 0 2 1 1 | 0 2 1 1 0 1 2 2 | 2 2 1 1 ------------+-----+-----------------+------------------------------+---------------------------+----------- x3x . . . . | 6 | 3 3 0 0 | 12N * * * * * * * | 1 2 0 0 0 0 0 0 | 2 1 0 0 x . . x . . | 4 | 2 0 2 0 | * 9N * * * * * * | 2 0 2 0 0 0 0 0 | 4 0 0 0 x . . . x . | 4 | 2 0 0 2 | * * 18N * * * * * | 0 2 1 1 0 0 0 0 | 2 2 0 0 . x6o . . . | 6 | 0 6 0 0 | * * * 6N * * * * | 0 0 0 0 1 2 0 0 | 0 0 2 1 . x . x . . | 4 | 0 2 2 0 | * * * * 18N * * * | 1 0 0 0 1 0 2 0 | 2 0 2 0 . x . . x . | 4 | 0 2 0 2 | * * * * * 36N * * | 0 1 0 0 0 1 1 1 | 1 1 1 1 . . . x3x . | 6 | 0 0 3 3 | * * * * * * 12N * | 0 0 1 0 0 0 2 0 | 2 0 1 0 . . . . x6o | 6 | 0 0 0 6 | * * * * * * * 6N | 0 0 0 1 0 0 0 2 | 0 2 0 1 ------------+-----+-----------------+------------------------------+---------------------------+----------- x3x . x . . ♦ 12 | 6 6 6 0 | 2 3 0 0 3 0 0 0 | 6N * * * * * * * | 2 0 0 0 x3x . . x . ♦ 12 | 6 6 0 6 | 2 0 3 0 0 3 0 0 | * 12N * * * * * * | 1 1 0 0 x . . x3x . ♦ 12 | 6 0 6 6 | 0 3 3 0 0 0 2 0 | * * 6N * * * * * | 2 0 0 0 x . . . x6o ♦ 12 | 6 0 0 12 | 0 0 6 0 0 0 0 2 | * * * 3N * * * * | 0 2 0 0 . x6o x . . ♦ 12 | 0 12 6 0 | 0 0 0 2 6 0 0 0 | * * * * 3N * * * | 0 0 2 0 . x6o . x . ♦ 12 | 0 12 0 6 | 0 0 0 2 0 6 0 0 | * * * * * 6N * * | 0 0 1 1 . x . x3x . ♦ 12 | 0 6 6 6 | 0 0 0 0 3 3 2 0 | * * * * * * 12N * | 1 0 1 0 . x . . x6o ♦ 12 | 0 6 0 12 | 0 0 0 0 0 6 0 2 | * * * * * * * 6N | 0 1 0 1 ------------+-----+-----------------+------------------------------+---------------------------+----------- x3x . x3x . ♦ 36 | 18 18 18 18 | 6 9 9 0 9 9 6 0 | 3 3 3 0 0 0 3 0 | 4N * * * x3x . . x6o ♦ 36 | 18 18 0 36 | 6 0 18 0 0 18 0 6 | 0 6 0 3 0 0 0 3 | * 2N * * . x6o x3x . ♦ 36 | 0 36 18 18 | 0 0 0 6 18 18 6 0 | 0 0 0 0 3 3 6 0 | * * 2N * . x6o . x6o ♦ 36 | 0 36 0 36 | 0 0 0 6 0 36 0 6 | 0 0 0 0 0 6 0 6 | * * * N
o3o6x x3x3x3*d (N → ∞) . . . . . . | 12N | 3 1 1 1 | 3 3 3 3 1 1 1 | 3 3 3 3 3 3 | 3 3 3 ---------------+-----+--------------+----------------------+-------------------+------ . . x . . . | 2 | 18N * * * | 2 1 1 1 0 0 0 | 2 2 2 1 1 1 | 2 2 2 . . . x . . | 2 | * 6N * * | 0 3 0 0 1 1 0 | 3 0 0 3 3 0 | 3 3 0 . . . . x . | 2 | * * 6N * | 0 0 3 0 1 0 1 | 0 3 0 3 0 3 | 3 0 3 . . . . . x | 2 | * * * 6N | 0 0 0 3 0 1 1 | 0 0 3 0 3 3 | 0 3 3 ---------------+-----+--------------+----------------------+-------------------+------ . o6x . . . | 6 | 6 0 0 0 | 6N * * * * * * | 1 1 1 0 0 0 | 1 1 1 . . x x . . | 4 | 2 2 0 0 | * 9N * * * * * | 2 0 0 1 1 0 | 2 2 0 . . x . x . | 4 | 2 0 2 0 | * * 9N * * * * | 0 2 0 1 0 1 | 2 0 2 . . x . . x | 4 | 2 0 0 2 | * * * 9N * * * | 0 0 2 0 1 1 | 0 2 2 . . . x3x . | 6 | 0 3 3 0 | * * * * 2N * * | 0 0 0 3 0 0 | 3 0 0 . . . x . x3*d | 6 | 0 3 0 3 | * * * * * 2N * | 0 0 0 0 3 0 | 0 3 0 . . . . x3x | 6 | 0 0 3 3 | * * * * * * 2N | 0 0 0 0 0 3 | 0 0 3 ---------------+-----+--------------+----------------------+-------------------+------ . o6x x . . ♦ 12 | 12 6 0 0 | 2 6 0 0 0 0 0 | 3N * * * * * | 1 1 0 . o6x . x . ♦ 12 | 12 0 6 0 | 2 0 6 0 0 0 0 | * 3N * * * * | 1 0 1 . o6x . . x ♦ 12 | 12 0 0 6 | 2 0 0 6 0 0 0 | * * 3N * * * | 0 1 1 . . x x3x . ♦ 12 | 6 6 6 0 | 0 3 3 0 2 0 0 | * * * 3N * * | 2 0 0 . . x x . x3*d ♦ 12 | 6 6 0 6 | 0 3 0 3 0 2 0 | * * * * 3N * | 0 2 0 . . x . x3x ♦ 12 | 6 0 6 6 | 0 0 3 3 0 0 2 | * * * * * 3N | 0 0 2 ---------------+-----+--------------+----------------------+-------------------+------ . o6x x3x . ♦ 36 | 36 18 18 0 | 6 18 18 0 6 0 0 | 3 3 0 6 0 0 | N * * . o6x x . x3*d ♦ 36 | 36 18 0 18 | 6 18 0 18 0 6 0 | 3 0 3 0 6 0 | * N * . o6x . x3x ♦ 36 | 36 0 18 18 | 6 0 18 18 0 0 6 | 0 3 3 0 0 6 | * * N
x3x6o x3x3x3*d (N → ∞) . . . . . . | 36N | 1 2 1 1 1 | 2 1 1 1 1 2 2 2 1 1 1 | 2 2 2 1 1 1 1 1 1 2 2 2 | 2 2 2 1 1 1 ---------------+-----+---------------------+--------------------------------------+-------------------------------------+--------------- x . . . . . | 2 | 18N * * * * | 2 1 1 1 0 0 0 0 0 0 0 | 2 2 2 1 1 1 0 0 0 0 0 0 | 2 2 2 0 0 0 . x . . . . | 2 | * 36N * * * | 1 0 0 0 1 1 1 1 0 0 0 | 1 1 1 0 0 0 1 1 1 1 1 1 | 1 1 1 1 1 1 . . . x . . | 2 | * * 18N * * | 0 1 0 0 0 2 0 0 1 1 0 | 2 0 0 1 1 0 1 0 0 2 2 0 | 2 2 0 1 1 0 . . . . x . | 2 | * * * 18N * | 0 0 1 0 0 0 2 0 1 0 1 | 0 2 0 1 0 1 0 1 0 2 0 2 | 2 0 2 1 0 1 . . . . . x | 2 | * * * * 18N | 0 0 0 1 0 0 0 2 0 1 1 | 0 0 2 0 1 1 0 0 1 0 2 2 | 0 2 2 0 1 1 ---------------+-----+---------------------+--------------------------------------+-------------------------------------+--------------- x3x . . . . | 6 | 3 3 0 0 0 | 12N * * * * * * * * * * | 1 1 1 0 0 0 0 0 0 0 0 0 | 1 1 1 0 0 0 x . . x . . | 4 | 2 0 2 0 0 | * 9N * * * * * * * * * | 2 0 0 1 1 0 0 0 0 0 0 0 | 2 2 0 0 0 0 x . . . x . | 4 | 2 0 0 2 0 | * * 9N * * * * * * * * | 0 2 0 1 0 1 0 0 0 0 0 0 | 2 0 2 0 0 0 x . . . . x | 4 | 2 0 0 0 2 | * * * 9N * * * * * * * | 0 0 2 0 1 1 0 0 0 0 0 0 | 0 2 2 0 0 0 . x6o . . . | 6 | 0 6 0 0 0 | * * * * 6N * * * * * * | 0 0 0 0 0 0 1 1 1 0 0 0 | 0 0 0 1 1 1 . x . x . . | 4 | 0 2 2 0 0 | * * * * * 18N * * * * * | 1 0 0 0 0 0 1 0 0 1 1 0 | 1 1 0 1 1 0 . x . . x . | 4 | 0 2 0 2 0 | * * * * * * 18N * * * * | 0 1 0 0 0 0 0 1 0 1 0 1 | 1 0 1 1 0 1 . x . . . x | 4 | 0 2 0 0 2 | * * * * * * * 18N * * * | 0 0 1 0 0 0 0 0 1 0 1 1 | 0 1 1 0 1 1 . . . x3x . | 6 | 0 0 3 3 0 | * * * * * * * * 6N * * | 0 0 0 1 0 0 0 0 0 2 0 0 | 2 0 0 1 0 0 . . . x . x3*d | 6 | 0 0 3 0 3 | * * * * * * * * * 6N * | 0 0 0 0 1 0 0 0 0 0 2 0 | 0 2 0 0 1 0 . . . . x3x | 6 | 0 0 0 3 3 | * * * * * * * * * * 6N | 0 0 0 0 0 1 0 0 0 0 0 2 | 0 0 2 0 0 1 ---------------+-----+---------------------+--------------------------------------+-------------------------------------+--------------- x3x . x . . ♦ 12 | 6 6 6 0 0 | 2 3 0 0 0 3 0 0 0 0 0 | 6N * * * * * * * * * * * | 1 1 0 0 0 0 x3x . . x . ♦ 12 | 6 6 0 6 0 | 2 0 3 0 0 0 3 0 0 0 0 | * 6N * * * * * * * * * * | 1 0 1 0 0 0 x3x . . . x ♦ 12 | 6 6 0 0 6 | 2 0 0 3 0 0 0 3 0 0 0 | * * 6N * * * * * * * * * | 0 1 1 0 0 0 x . . x3x . ♦ 12 | 6 0 6 6 0 | 0 3 3 0 0 0 0 0 2 0 0 | * * * 3N * * * * * * * * | 2 0 0 0 0 0 x . . x . x3*d ♦ 12 | 6 0 6 0 6 | 0 3 0 3 0 0 0 0 0 2 0 | * * * * 3N * * * * * * * | 0 2 0 0 0 0 x . . . x3x ♦ 12 | 6 0 0 6 6 | 0 0 3 3 0 0 0 0 0 0 2 | * * * * * 3N * * * * * * | 0 0 2 0 0 0 . x6o x . . ♦ 12 | 0 12 6 0 0 | 0 0 0 0 2 6 0 0 0 0 0 | * * * * * * 3N * * * * * | 0 0 0 1 1 0 . x6o . x . ♦ 12 | 0 12 0 6 0 | 0 0 0 0 2 0 6 0 0 0 0 | * * * * * * * 3N * * * * | 0 0 0 1 0 1 . x6o . . x ♦ 12 | 0 12 0 0 6 | 0 0 0 0 2 0 0 6 0 0 0 | * * * * * * * * 3N * * * | 0 0 0 0 1 1 . x . x3x . ♦ 12 | 0 6 6 6 0 | 0 0 0 0 0 3 3 0 2 0 0 | * * * * * * * * * 6N * * | 1 0 0 1 0 0 . x . x . x3*d ♦ 12 | 0 6 6 0 6 | 0 0 0 0 0 3 0 3 0 2 0 | * * * * * * * * * * 6N * | 0 1 0 0 1 0 . x . . x3x ♦ 12 | 0 6 0 6 6 | 0 0 0 0 0 0 3 3 0 0 2 | * * * * * * * * * * * 6N | 0 0 1 0 0 1 ---------------+-----+---------------------+--------------------------------------+-------------------------------------+--------------- x3x . x3x . ♦ 36 | 18 18 18 18 0 | 6 9 9 0 0 9 9 0 6 0 0 | 3 3 0 3 0 0 0 0 0 3 0 0 | 2N * * * * * x3x . x . x3*d ♦ 36 | 18 18 18 0 18 | 6 9 0 9 0 9 0 9 0 6 0 | 3 0 3 0 3 0 0 0 0 0 3 0 | * 2N * * * * x3x . . x3x ♦ 36 | 18 18 0 18 18 | 6 0 9 9 0 0 9 9 0 0 6 | 0 3 3 0 0 3 0 0 0 0 0 3 | * * 2N * * * . x6o x3x . ♦ 36 | 0 36 18 18 0 | 0 0 0 0 6 18 18 0 6 0 0 | 0 0 0 0 0 0 3 3 0 6 0 0 | * * * N * * . x6o x . x3*d ♦ 36 | 0 36 18 0 18 | 0 0 0 0 6 18 0 18 0 6 0 | 0 0 0 0 0 0 3 0 3 0 6 0 | * * * * N * . x6o . x3x ♦ 36 | 0 36 0 18 18 | 0 0 0 0 6 0 18 18 0 0 6 | 0 0 0 0 0 0 0 3 3 0 0 6 | * * * * * N
x3x3x3*a x3x3x3*d (N → ∞) . . . . . . | 36N | 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 ------------------+-----+-------------------------+----------------------------------------------+-------------------------------------------------------+------------------ x . . . . . | 2 | 18N * * * * * | 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 | 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 | 1 1 1 1 1 1 0 0 0 . x . . . . | 2 | * 18N * * * * | 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 | 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 | 1 1 1 0 0 0 1 1 1 . . x . . . | 2 | * * 18N * * * | 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0 | 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 | 0 0 0 1 1 1 1 1 1 . . . x . . | 2 | * * * 18N * * | 0 0 1 0 0 0 1 0 0 1 0 0 1 1 0 | 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 1 0 | 1 1 0 1 1 0 1 1 0 . . . . x . | 2 | * * * * 18N * | 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1 | 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 | 1 0 1 1 0 1 1 0 1 . . . . . x | 2 | * * * * * 18N | 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1 | 0 0 1 0 0 1 0 1 0 0 0 1 0 1 1 0 1 1 | 0 1 1 0 1 1 0 1 1 ------------------+-----+-------------------------+----------------------------------------------+-------------------------------------------------------+------------------ x3x . . . . | 6 | 3 3 0 0 0 0 | 6N * * * * * * * * * * * * * * | 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 1 1 0 0 0 0 0 0 x . x3*a . . . | 6 | 3 0 3 0 0 0 | * 6N * * * * * * * * * * * * * | 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 1 1 1 0 0 0 x . . x . . | 4 | 2 0 0 2 0 0 | * * 9N * * * * * * * * * * * * | 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 | 1 1 0 1 1 0 0 0 0 x . . . x . | 4 | 2 0 0 0 2 0 | * * * 9N * * * * * * * * * * * | 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 | 1 0 1 1 0 1 0 0 0 x . . . . x | 4 | 2 0 0 0 0 2 | * * * * 9N * * * * * * * * * * | 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 | 0 1 1 0 1 1 0 0 0 . x3x . . . | 6 | 0 3 3 0 0 0 | * * * * * 6N * * * * * * * * * | 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 | 0 0 0 0 0 0 1 1 1 . x . x . . | 4 | 0 2 0 2 0 0 | * * * * * * 9N * * * * * * * * | 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 | 1 1 0 0 0 0 1 1 0 . x . . x . | 4 | 0 2 0 0 2 0 | * * * * * * * 9N * * * * * * * | 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 | 1 0 1 0 0 0 1 0 1 . x . . . x | 4 | 0 2 0 0 0 2 | * * * * * * * * 9N * * * * * * | 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 | 0 1 1 0 0 0 0 1 1 . . x x . . | 4 | 0 0 2 2 0 0 | * * * * * * * * * 9N * * * * * | 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 | 0 0 0 1 1 0 1 1 0 . . x . x . | 4 | 0 0 2 0 2 0 | * * * * * * * * * * 9N * * * * | 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 | 0 0 0 1 0 1 1 0 1 . . x . . x | 4 | 0 0 2 0 0 2 | * * * * * * * * * * * 9N * * * | 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 | 0 0 0 0 1 1 0 1 1 . . . x3x . | 6 | 0 0 0 3 3 0 | * * * * * * * * * * * * 6N * * | 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 | 1 0 0 1 0 0 1 0 0 . . . x . x3*d | 6 | 0 0 0 3 0 3 | * * * * * * * * * * * * * 6N * | 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 | 0 1 0 0 1 0 0 1 0 . . . . x3x | 6 | 0 0 0 0 3 3 | * * * * * * * * * * * * * * 6N | 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 | 0 0 1 0 0 1 0 0 1 ------------------+-----+-------------------------+----------------------------------------------+-------------------------------------------------------+------------------ x3x . x . . ♦ 12 | 6 6 0 6 0 0 | 2 0 3 0 0 0 3 0 0 0 0 0 0 0 0 | 3N * * * * * * * * * * * * * * * * * | 1 1 0 0 0 0 0 0 0 x3x . . x . ♦ 12 | 6 6 0 0 6 0 | 2 0 0 3 0 0 0 3 0 0 0 0 0 0 0 | * 3N * * * * * * * * * * * * * * * * | 1 0 1 0 0 0 0 0 0 x3x . . . x ♦ 12 | 6 6 0 0 0 6 | 2 0 0 0 3 0 0 0 3 0 0 0 0 0 0 | * * 3N * * * * * * * * * * * * * * * | 0 1 1 0 0 0 0 0 0 x . x3*a x . . ♦ 12 | 6 0 6 6 0 0 | 0 2 3 0 0 0 0 0 0 3 0 0 0 0 0 | * * * 3N * * * * * * * * * * * * * * | 0 0 0 1 1 0 0 0 0 x . x3*a . x . ♦ 12 | 6 0 6 0 6 0 | 0 2 0 3 0 0 0 0 0 0 3 0 0 0 0 | * * * * 3N * * * * * * * * * * * * * | 0 0 0 1 0 1 0 0 0 x . x3*a . . x ♦ 12 | 6 0 6 0 0 6 | 0 2 0 0 3 0 0 0 0 0 0 3 0 0 0 | * * * * * 3N * * * * * * * * * * * * | 0 0 0 0 1 1 0 0 0 x . . x3x . ♦ 12 | 6 0 0 6 6 0 | 0 0 3 3 0 0 0 0 0 0 0 0 2 0 0 | * * * * * * 3N * * * * * * * * * * * | 1 0 0 1 0 0 0 0 0 x . . x . x3*d ♦ 12 | 6 0 0 6 0 6 | 0 0 3 0 3 0 0 0 0 0 0 0 0 2 0 | * * * * * * * 3N * * * * * * * * * * | 0 1 0 0 1 0 0 0 0 x . . . x3x ♦ 12 | 6 0 0 0 6 0 | 0 0 0 3 3 0 0 0 0 0 0 0 0 0 2 | * * * * * * * * 3N * * * * * * * * * | 0 0 1 0 0 1 0 0 0 . x3x x . . ♦ 12 | 0 6 6 6 0 0 | 0 0 0 0 0 2 3 0 0 3 0 0 0 0 0 | * * * * * * * * * 3N * * * * * * * * | 0 0 0 0 0 0 1 1 0 . x3x . x . ♦ 12 | 0 6 6 0 6 0 | 0 0 0 0 0 2 0 3 0 0 3 0 0 0 0 | * * * * * * * * * * 3N * * * * * * * | 0 0 0 0 0 0 1 0 1 . x3x . . x ♦ 12 | 0 6 6 0 0 6 | 0 0 0 0 0 2 0 0 3 0 0 3 0 0 0 | * * * * * * * * * * * 3N * * * * * * | 0 0 0 0 0 0 0 1 1 . x . x3x . ♦ 12 | 0 6 0 6 6 0 | 0 0 0 0 0 0 3 3 0 0 0 0 2 0 0 | * * * * * * * * * * * * 3N * * * * * | 1 0 0 0 0 0 1 0 0 . x . x . x3*d ♦ 12 | 0 6 0 6 0 6 | 0 0 0 0 0 0 3 0 3 0 0 0 0 2 0 | * * * * * * * * * * * * * 3N * * * * | 0 1 0 0 0 0 0 1 0 . x . . x3x ♦ 12 | 0 6 0 0 6 6 | 0 0 0 0 0 0 0 3 3 0 0 0 0 0 2 | * * * * * * * * * * * * * * 3N * * * | 0 0 1 0 0 0 0 0 1 . . x x3x . ♦ 12 | 0 0 6 6 6 0 | 0 0 0 0 0 0 0 0 0 3 3 0 2 0 0 | * * * * * * * * * * * * * * * 3N * * | 0 0 0 1 0 0 1 0 0 . . x x . x3*d ♦ 12 | 0 0 6 6 0 6 | 0 0 0 0 0 0 0 0 0 3 0 3 0 2 0 | * * * * * * * * * * * * * * * * 3N * | 0 0 0 0 1 0 0 1 0 . . x . x3x ♦ 12 | 0 0 6 0 6 6 | 0 0 0 0 0 0 0 0 0 0 3 3 0 0 2 | * * * * * * * * * * * * * * * * * 3N | 0 0 0 0 0 1 0 0 1 ------------------+-----+-------------------------+----------------------------------------------+-------------------------------------------------------+------------------ x3x . x3x . ♦ 36 | 18 18 0 18 18 0 | 6 0 9 9 0 0 9 9 0 0 0 0 6 0 0 | 3 3 0 0 0 0 3 0 0 0 0 0 3 0 0 0 0 0 | N * * * * * * * * x3x . x . x3*d ♦ 36 | 18 18 0 18 0 18 | 6 0 9 0 9 0 9 0 9 0 0 0 0 6 0 | 3 0 3 0 0 0 0 3 0 0 0 0 0 3 0 0 0 0 | * N * * * * * * * x3x . . x3x ♦ 36 | 18 18 0 0 18 18 | 6 0 0 9 9 0 0 9 9 0 0 0 0 0 6 | 0 3 3 0 0 0 0 0 3 0 0 0 0 0 3 0 0 0 | * * N * * * * * * x . x3*a x3x . ♦ 36 | 18 0 18 18 18 0 | 0 6 9 9 0 0 0 0 0 9 9 0 6 0 0 | 0 0 0 3 3 0 3 0 0 0 0 0 0 0 0 3 0 0 | * * * N * * * * * x . x3*a x . x3*d ♦ 36 | 18 0 18 18 0 18 | 0 6 9 0 9 0 0 0 0 9 0 9 0 6 0 | 0 0 0 3 0 3 0 3 0 0 0 0 0 0 0 0 3 0 | * * * * N * * * * x . x3*a . x3x ♦ 36 | 18 0 18 0 18 18 | 0 6 0 9 9 0 0 0 0 0 9 9 0 0 6 | 0 0 0 0 3 3 0 0 3 0 0 0 0 0 0 0 0 3 | * * * * * N * * * . x3x x3x . ♦ 36 | 0 18 18 18 18 0 | 0 0 0 0 0 6 9 9 0 9 9 0 6 0 0 | 0 0 0 0 0 0 0 0 0 3 3 0 3 0 0 3 0 0 | * * * * * * N * * . x3x x . x3*d ♦ 36 | 0 18 18 18 0 18 | 0 0 0 0 0 6 9 0 9 9 0 9 0 6 0 | 0 0 0 0 0 0 0 0 0 3 0 3 0 3 0 0 3 0 | * * * * * * * N * . x3x . x3x ♦ 36 | 0 18 18 0 18 18 | 0 0 0 0 0 6 0 9 9 0 9 9 0 0 6 | 0 0 0 0 0 0 0 0 0 0 3 3 0 0 3 0 0 3 | * * * * * * * * N
© 2004-2025 | top of page |