Acronym gidthixhi
Name great ditrigonal hecatonicosihexacosihecatonicosachoron
Cross sections
 ©
Circumradius sqrt[(13+3 sqrt(5))/2] = 3.139124
General of army thi
Colonel of regiment (is itself locally convex – uniform polychoral members:
by cells: doe gidditdid tet ti tut
gidthixhi 12012060000
gadixady 1200600120600
& others)
External
links
hedrondude   WikiChoron  

As abstract polytope gidthixhi is isomorphic to sidthixhi, thereby replacing decagrams by decagons and pentagons by pentagrams, respectively replacing doe by gissid and gidditdid by sidditdid. – It also is isomorphic to gixhihy, thereby replacing only pentagons by pentagrams, respectively replacing doe by gissid and gidditdid by gaddid. – Finally it is isomorphic to sixhihy, thereby replacing only decagrams by decagons, respectively replacing gidditdid by saddid.


Incidence matrix according to Dynkin symbol

o3o3x5/3x5*b

. . .   .    | 2400 |    3    3 |    3    3   3 |   1   3   1
-------------+------+-----------+---------------+------------
. . x   .    |    2 | 3600    * |    2    0   1 |   1   0   2
. . .   x    |    2 |    * 3600 |    0    2   1 |   0   1   2
-------------+------+-----------+---------------+------------
. o3x   .    |    3 |    3    0 | 2400    *   * |   1   0   1
. o .   x5*b |    5 |    0    5 |    * 1440   * |   0   1   1
. . x5/3x    |   10 |    5    5 |    *    * 720 |   0   0   2
-------------+------+-----------+---------------+------------
o3o3x   .        4 |    6    0 |    4    0   0 | 600   *   *
o3o .   x5*b    20 |    0   30 |    0   12   0 |   * 120   *
. o3x5/3x5*b    60 |   60   60 |   20   12  12 |   *   * 120

o3o3/2x5/3x5/4*b

. .   .   .      | 2400 |    3    3 |    3    3   3 |   1   3   1
-----------------+------+-----------+---------------+------------
. .   x   .      |    2 | 3600    * |    2    0   1 |   1   0   2
. .   .   x      |    2 |    * 3600 |    0    2   1 |   0   1   2
-----------------+------+-----------+---------------+------------
. o3/2x   .      |    3 |    3    0 | 2400    *   * |   1   0   1
. o   .   x5/4*b |    5 |    0    5 |    * 1440   * |   0   1   1
. .   x5/3x      |   10 |    5    5 |    *    * 720 |   0   0   2
-----------------+------+-----------+---------------+------------
o3o3/2x   .          4 |    6    0 |    4    0   0 | 600   *   *
o3o   .   x5/4*b    20 |    0   30 |    0   12   0 |   * 120   *
. o3/2x5/3x5/4*b    60 |   60   60 |   20   12  12 |   *   * 120

o3/2o3x5/3x5*b

.   . .   .    | 2400 |    3    3 |    3    3   3 |   1   3   1
---------------+------+-----------+---------------+------------
.   . x   .    |    2 | 3600    * |    2    0   1 |   1   0   2
.   . .   x    |    2 |    * 3600 |    0    2   1 |   0   1   2
---------------+------+-----------+---------------+------------
.   o3x   .    |    3 |    3    0 | 2400    *   * |   1   0   1
.   o .   x5*b |    5 |    0    5 |    * 1440   * |   0   1   1
.   . x5/3x    |   10 |    5    5 |    *    * 720 |   0   0   2
---------------+------+-----------+---------------+------------
o3/2o3x   .        4 |    6    0 |    4    0   0 | 600   *   *
o3/2o .   x5*b    20 |    0   30 |    0   12   0 |   * 120   *
.   o3x5/3x5*b    60 |   60   60 |   20   12  12 |   *   * 120

o3/2o3/2x5/3x5/4*b

.   .   .   .      | 2400 |    3    3 |    3    3   3 |   1   3   1
-------------------+------+-----------+---------------+------------
.   .   x   .      |    2 | 3600    * |    2    0   1 |   1   0   2
.   .   .   x      |    2 |    * 3600 |    0    2   1 |   0   1   2
-------------------+------+-----------+---------------+------------
.   o3/2x   .      |    3 |    3    0 | 2400    *   * |   1   0   1
.   o   .   x5/4*b |    5 |    0    5 |    * 1440   * |   0   1   1
.   .   x5/3x      |   10 |    5    5 |    *    * 720 |   0   0   2
-------------------+------+-----------+---------------+------------
o3/2o3/2x   .          4 |    6    0 |    4    0   0 | 600   *   *
o3/2o   .   x5/4*b    20 |    0   30 |    0   12   0 |   * 120   *
.   o3/2x5/3x5/4*b    60 |   60   60 |   20   12  12 |   *   * 120

© 2004-2019
top of page