Acronym | gidthixhi | ||||||||||||||||||
Name | great ditrigonary hecatonicosihexacosihecatonicosachoron | ||||||||||||||||||
Cross sections |
© | ||||||||||||||||||
Circumradius | sqrt[(13+3 sqrt(5))/2] = 3.139124 | ||||||||||||||||||
General of army | thi | ||||||||||||||||||
Colonel of regiment |
(is itself locally convex
– uniform polychoral members:
| ||||||||||||||||||
Face vector | 2400, 7200, 4560, 840 | ||||||||||||||||||
Confer |
| ||||||||||||||||||
External links |
As abstract polytope gidthixhi is isomorphic to sidthixhi, thereby replacing decagrams by decagons and pentagons by pentagrams, respectively replacing doe by gissid and gidditdid by sidditdid. – It also is isomorphic to gixhihy, thereby replacing only pentagons by pentagrams, respectively replacing doe by gissid and gidditdid by gaddid. – Finally it is isomorphic to sixhihy, thereby replacing only decagrams by decagons, respectively replacing gidditdid by saddid.
Incidence matrix according to Dynkin symbol
o3o3x5/3x5*b . . . . | 2400 | 3 3 | 3 3 3 | 1 3 1 -------------+------+-----------+---------------+------------ . . x . | 2 | 3600 * | 2 0 1 | 1 0 2 . . . x | 2 | * 3600 | 0 2 1 | 0 1 2 -------------+------+-----------+---------------+------------ . o3x . | 3 | 3 0 | 2400 * * | 1 0 1 . o . x5*b | 5 | 0 5 | * 1440 * | 0 1 1 . . x5/3x | 10 | 5 5 | * * 720 | 0 0 2 -------------+------+-----------+---------------+------------ o3o3x . ♦ 4 | 6 0 | 4 0 0 | 600 * * o3o . x5*b ♦ 20 | 0 30 | 0 12 0 | * 120 * . o3x5/3x5*b ♦ 60 | 60 60 | 20 12 12 | * * 120
o3o3/2x5/3x5/4*b . . . . | 2400 | 3 3 | 3 3 3 | 1 3 1 -----------------+------+-----------+---------------+------------ . . x . | 2 | 3600 * | 2 0 1 | 1 0 2 . . . x | 2 | * 3600 | 0 2 1 | 0 1 2 -----------------+------+-----------+---------------+------------ . o3/2x . | 3 | 3 0 | 2400 * * | 1 0 1 . o . x5/4*b | 5 | 0 5 | * 1440 * | 0 1 1 . . x5/3x | 10 | 5 5 | * * 720 | 0 0 2 -----------------+------+-----------+---------------+------------ o3o3/2x . ♦ 4 | 6 0 | 4 0 0 | 600 * * o3o . x5/4*b ♦ 20 | 0 30 | 0 12 0 | * 120 * . o3/2x5/3x5/4*b ♦ 60 | 60 60 | 20 12 12 | * * 120
o3/2o3x5/3x5*b . . . . | 2400 | 3 3 | 3 3 3 | 1 3 1 ---------------+------+-----------+---------------+------------ . . x . | 2 | 3600 * | 2 0 1 | 1 0 2 . . . x | 2 | * 3600 | 0 2 1 | 0 1 2 ---------------+------+-----------+---------------+------------ . o3x . | 3 | 3 0 | 2400 * * | 1 0 1 . o . x5*b | 5 | 0 5 | * 1440 * | 0 1 1 . . x5/3x | 10 | 5 5 | * * 720 | 0 0 2 ---------------+------+-----------+---------------+------------ o3/2o3x . ♦ 4 | 6 0 | 4 0 0 | 600 * * o3/2o . x5*b ♦ 20 | 0 30 | 0 12 0 | * 120 * . o3x5/3x5*b ♦ 60 | 60 60 | 20 12 12 | * * 120
o3/2o3/2x5/3x5/4*b . . . . | 2400 | 3 3 | 3 3 3 | 1 3 1 -------------------+------+-----------+---------------+------------ . . x . | 2 | 3600 * | 2 0 1 | 1 0 2 . . . x | 2 | * 3600 | 0 2 1 | 0 1 2 -------------------+------+-----------+---------------+------------ . o3/2x . | 3 | 3 0 | 2400 * * | 1 0 1 . o . x5/4*b | 5 | 0 5 | * 1440 * | 0 1 1 . . x5/3x | 10 | 5 5 | * * 720 | 0 0 2 -------------------+------+-----------+---------------+------------ o3/2o3/2x . ♦ 4 | 6 0 | 4 0 0 | 600 * * o3/2o . x5/4*b ♦ 20 | 0 30 | 0 12 0 | * 120 * . o3/2x5/3x5/4*b ♦ 60 | 60 60 | 20 12 12 | * * 120
© 2004-2024 | top of page |