Acronym | ... |
Name | gapript+16 2thah (?) |
Circumradius | sqrt[2-sqrt(2)] = 0.765367 |
Coordinates | ((sqrt(2)-1)/2, (sqrt(2)-1)/2, 1/2, 1/2) & all permutations, all changes of sign |
Confer |
|
This Grünbaumian polychoron is an edge-faceting of the quasirhombated tesseract (qrit). It can be seen as a union of gapript plus the 16 pseudo-thah filled in as doubled up copies, in fact, these double-covers unite as 2thah, thereby letting the surface cross over at this former pseudo-cells. And indeed, the vertex figure is an asymmetric faceting of the vertex figure of qrit. Therefore there can be blended 2 mirror symmetric such, and, correspondingly, the vertices of this polychoron coincide by pairs.
As abstract polytope gapript+16 2thah is isomorphic to spript+16 2thah, thereby replacing octagrams by octagons, resp. by replacing quith by tic and replacing stop by op.
Incidence matrix according to Dynkin symbol
x4/3x3o3/2x . . . . | 192 | 1 2 2 | 2 2 1 2 1 | 1 2 1 1 ------------+-----+------------+----------------+----------- x . . . | 2 | 96 * * | 2 2 0 0 0 | 1 2 1 0 . x . . | 2 | * 192 * | 1 0 1 1 0 | 1 1 0 1 . . . x | 2 | * * 192 | 0 1 0 1 1 | 0 1 1 1 ------------+-----+------------+----------------+----------- x4/3x . . | 8 | 4 4 0 | 48 * * * * | 1 1 0 0 x . . x | 4 | 2 0 2 | * 96 * * * | 0 1 1 0 . x3o . | 3 | 0 3 0 | * * 64 * * | 1 0 0 1 . x . x | 4 | 0 2 2 | * * * 96 * | 0 1 0 1 . . o3/2x | 3 | 0 0 3 | * * * * 64 | 0 0 1 1 ------------+-----+------------+----------------+----------- x4/3x3o . ♦ 24 | 12 24 0 | 6 0 8 0 0 | 8 * * * x4/3x . x ♦ 16 | 8 8 8 | 2 4 0 4 0 | * 24 * * x . o3/2x ♦ 6 | 3 0 6 | 0 3 0 0 2 | * * 32 * . x3o3/2x ♦ 12 | 0 12 12 | 0 0 4 6 4 | * * * 16
x4/3x3/2o3x . . . . | 192 | 1 2 2 | 2 2 1 2 1 | 1 2 1 1 ------------+-----+------------+----------------+----------- x . . . | 2 | 96 * * | 2 2 0 0 0 | 1 2 1 0 . x . . | 2 | * 192 * | 1 0 1 1 0 | 1 1 0 1 . . . x | 2 | * * 192 | 0 1 0 1 1 | 0 1 1 1 ------------+-----+------------+----------------+----------- x4/3x . . | 8 | 4 4 0 | 48 * * * * | 1 1 0 0 x . . x | 4 | 2 0 2 | * 96 * * * | 0 1 1 0 . x3/2o . | 3 | 0 3 0 | * * 64 * * | 1 0 0 1 . x . x | 4 | 0 2 2 | * * * 96 * | 0 1 0 1 . . o3x | 3 | 0 0 3 | * * * * 64 | 0 0 1 1 ------------+-----+------------+----------------+----------- x4/3x3/2o . ♦ 24 | 12 24 0 | 6 0 8 0 0 | 8 * * * x4/3x . x ♦ 16 | 8 8 8 | 2 4 0 4 0 | * 24 * * x . o3x ♦ 6 | 3 0 6 | 0 3 0 0 2 | * * 32 * . x3/2o3x ♦ 12 | 0 12 12 | 0 0 4 6 4 | * * * 16
© 2004-2025 | top of page |