Acronym ...
Name gapript+16 2thah (?)
Circumradius sqrt[2-sqrt(2)] = 0.765367
Coordinates ((sqrt(2)-1)/2, (sqrt(2)-1)/2, 1/2, 1/2)   & all permutations, all changes of sign
Confer gapript   2thah  

This Grünbaumian polychoron is an edge-faceting of the quasirhombated tesseract (qrit). It can be seen as a union of gapript plus the 16 pseudo-thah filled in as doubled up copies, in fact, these double-covers unite as 2thah, thereby letting the surface cross over at this former pseudo-cells. And indeed, the vertex figure is an asymmetric faceting of the vertex figure of qrit. Therefore there can be blended 2 mirror symmetric such, and, correspondingly, the vertices of this polychoron coincide by pairs.

As abstract polytope gapript+16 2thah is isomorphic to spript+16 2thah, thereby replacing octagrams by octagons, resp. by replacing quith by tic and replacing stop by op.


Incidence matrix according to Dynkin symbol

x4/3x3o3/2x

.   . .   . | 192 |  1   2   2 |  2  2  1  2  1 | 1  2  1  1
------------+-----+------------+----------------+-----------
x   . .   . |   2 | 96   *   * |  2  2  0  0  0 | 1  2  1  0
.   x .   . |   2 |  * 192   * |  1  0  1  1  0 | 1  1  0  1
.   . .   x |   2 |  *   * 192 |  0  1  0  1  1 | 0  1  1  1
------------+-----+------------+----------------+-----------
x4/3x .   . |   8 |  4   4   0 | 48  *  *  *  * | 1  1  0  0
x   . .   x |   4 |  2   0   2 |  * 96  *  *  * | 0  1  1  0
.   x3o   . |   3 |  0   3   0 |  *  * 64  *  * | 1  0  0  1
.   x .   x |   4 |  0   2   2 |  *  *  * 96  * | 0  1  0  1
.   . o3/2x |   3 |  0   0   3 |  *  *  *  * 64 | 0  0  1  1
------------+-----+------------+----------------+-----------
x4/3x3o   .   24 | 12  24   0 |  6  0  8  0  0 | 8  *  *  *
x4/3x .   x   16 |  8   8   8 |  2  4  0  4  0 | * 24  *  *
x   . o3/2x    6 |  3   0   6 |  0  3  0  0  2 | *  * 32  *
.   x3o3/2x   12 |  0  12  12 |  0  0  4  6  4 | *  *  * 16

x4/3x3/2o3x

.   .   . . | 192 |  1   2   2 |  2  2  1  2  1 | 1  2  1  1
------------+-----+------------+----------------+-----------
x   .   . . |   2 | 96   *   * |  2  2  0  0  0 | 1  2  1  0
.   x   . . |   2 |  * 192   * |  1  0  1  1  0 | 1  1  0  1
.   .   . x |   2 |  *   * 192 |  0  1  0  1  1 | 0  1  1  1
------------+-----+------------+----------------+-----------
x4/3x   . . |   8 |  4   4   0 | 48  *  *  *  * | 1  1  0  0
x   .   . x |   4 |  2   0   2 |  * 96  *  *  * | 0  1  1  0
.   x3/2o . |   3 |  0   3   0 |  *  * 64  *  * | 1  0  0  1
.   x   . x |   4 |  0   2   2 |  *  *  * 96  * | 0  1  0  1
.   .   o3x |   3 |  0   0   3 |  *  *  *  * 64 | 0  0  1  1
------------+-----+------------+----------------+-----------
x4/3x3/2o .   24 | 12  24   0 |  6  0  8  0  0 | 8  *  *  *
x4/3x   . x   16 |  8   8   8 |  2  4  0  4  0 | * 24  *  *
x   .   o3x    6 |  3   0   6 |  0  3  0  0  2 | *  * 32  *
.   x3/2o3x   12 |  0  12  12 |  0  0  4  6  4 | *  *  * 16

© 2004-2019
top of page