Acronym bisc sridtathi
Name bistratic dodecahedron-first cap of small retroinverted ditetrahedronary trishecatonicosachoron
Circumradius sqrt[3+sqrt(5)] = 2.288246
Face vector 140, 450, 366, 68
Confer
uniform relative:
sridtathi  

Incidence matrix according to Dynkin symbol

reduced( ofx5xox5/2xxx&#xt , by x5/2x )   → height(1,2) = 1/2
                                            height(2,3) = (1+sqrt(5))/4 = 0.809017
(doe || pseudo (f,x)-raded || sird)

identif( o..5o..5/2o..     ) | 20  *  * |  3   6  0   0  0  0 |  3  3  6  6  0  0  0  0  0 | 1  3  3  3  0 0
         .o.5.o.5/2.o.       |  * 60  * |  0   2  2   2  0  0 |  0  2  1  2  1  1  2  0  0 | 0  1  2  1  1 0
identif( ..o5..o5/2..o     ) |  *  * 60 |  0   0  0   2  2  2 |  0  2  0  0  0  2  2  2  2 | 0  2  2  0  1 1
-----------------------------+----------+---------------------+----------------------------+----------------
identif( ... x..   ...   & ) |  2  0  0 | 30   *  *   *  *  * |  2  0  2  2  0  0  0  0  0 | 1  2  1  2  0 0
         oo.5oo.5/2oo.&#x    |  1  1  0 |  * 120  *   *  *  * |  0  1  1  1  0  0  0  0  0 | 0  1  1  1  0 0
         ... ...  .x.        |  0  2  0 |  *   * 60   *  *  * |  0  0  0  1  1  0  1  0  0 | 0  0  1  1  1 0
         .oo5.oo5/2.oo&#x    |  0  1  1 |  *   *  * 120  *  * |  0  1  0  0  0  1  1  0  0 | 0  1  1  0  1 0
         ..x ...   ...       |  0  0  2 |  *   *  *   * 60  * |  0  1  0  0  0  0  0  1  1 | 0  1  1  0  0 1
identif( ... ..x   ...   & ) |  0  0  2 |  *   *  *   *  * 60 |  0  0  0  0  0  1  1  1  1 | 0  1  1  0  1 1
-----------------------------+----------+---------------------+----------------------------+----------------
         o..5x..   ...       |  5  0  0 |  5   0  0   0  0  0 | 12  *  *  *  *  *  *  *  * | 1  1  0  0  0 0
         ofx ...   ...&#xt   |  1  2  2 |  0   2  0   2  1  0 |  * 60  *  *  *  *  *  *  * | 0  1  1  0  0 0
         ... xo.   ...&#x    |  2  1  0 |  1   2  0   0  0  0 |  *  * 60  *  *  *  *  *  * | 0  1  0  1  0 0
         ... ...   xx.&#x    |  2  2  0 |  1   2  1   0  0  0 |  *  *  * 60  *  *  *  *  * | 0  0  1  1  0 0
         ... .o.5/2.x.       |  0  5  0 |  0   0  5   0  0  0 |  *  *  *  * 12  *  *  *  * | 0  0  0  1  1 0
         ... .ox   ...&#x    |  0  1  2 |  0   0  0   2  0  1 |  *  *  *  *  * 60  *  *  * | 0  1  0  0  1 0
         ... ...   .xx&#x    |  0  2  2 |  0   0  1   2  0  1 |  *  *  *  *  *  * 60  *  * | 0  0  1  0  1 0
         ..x5..x   ...       |  0  0 10 |  0   0  0   0  5  5 |  *  *  *  *  *  *  * 12  * | 0  1  0  0  0 1
         ..x ...   ..x       |  0  0  4 |  0   0  0   0  2  2 |  *  *  *  *  *  *  *  * 30 | 0  0  1  0  0 1
-----------------------------+----------+---------------------+----------------------------+----------------
reduced( o..5x..5/2x..     )  20  0  0 | 30   0  0   0  0  0 | 12  0  0  0  0  0  0  0  0 | 1  *  *  *  * *
         ofx5xox   ...&#xt     5  5 10 |  5  10  0  10  5  5 |  1  5  5  0  0  5  0  1  0 | * 12  *  *  * *
         ofx ...   xxx&#xt     2  4  4 |  1   4  2   4  2  2 |  0  2  0  2  0  0  2  0  1 | *  * 30  *  * *
reduced( ... xo.5/2xx.&#x  )   5  5  0 |  5  10  5   0  0  0 |  0  0  5  5  1  0  0  0  0 | *  *  * 12  * *
reduced( ... .ox5/2.xx&#x  )   0  5  5 |  0   0  5  10  0  5 |  0  0  0  0  1  5  5  0  0 | *  *  *  * 12 *
reduced( ..x5..x5/2..x     )   0  0 60 |  0   0  0   0 60 60 |  0  0  0  0  0  0  0 12 30 | *  *  *  *  * 1

© 2004-2025
top of page