| Acronym | ... |
| Name | triangular duoexpandoprism |
| Circumradius | sqrt[(a2+3b2)/3] |
|
Lace city in approx. ASCII-art |
a3o a3o
b3b
a3o a3o
b3b b3b
a3o a3o
|
| Face vector | 36, 108, 120, 48 |
|
External links |
|
Incidence matrix according to Dynkin symbol
ab3ob ba3bo&#zc → height = 0
2a < 3b (else a3o - b3b - a3o becomes collinear)
3c2 = 2a2-6ab+6b2
(c-laced tegum sum of 2 (a,b)-thiddips)
o.3o. o.3o. | 18 * | 2 1 1 2 0 0 0 | 1 2 2 2 1 2 2 0 0 0 | 1 1 2 2 1 1 0 0
.o3.o .o3.o | * 18 | 0 0 0 2 1 1 2 | 0 0 0 2 2 2 1 2 2 1 | 0 0 2 1 2 1 1 1
---------------+-------+------------------+-------------------------+----------------
a. .. .. .. | 2 0 | 18 * * * * * * | 1 1 1 1 0 0 0 0 0 0 | 1 1 1 1 0 0 0 0 a
.. .. b. .. | 2 0 | * 9 * * * * * | 0 2 0 0 0 0 2 0 0 0 | 1 0 2 0 1 0 0 0 b
.. .. .. b. | 2 0 | * * 9 * * * * | 0 0 2 0 0 2 0 0 0 0 | 0 1 0 2 0 1 0 0 b
oo3oo oo3oo&#c | 1 1 | * * * 36 * * * | 0 0 0 1 1 1 1 0 0 0 | 0 0 1 1 1 1 0 0 c
.b .. .. .. | 0 2 | * * * * 9 * * | 0 0 0 2 0 0 0 2 0 0 | 0 0 2 1 0 0 1 0 b
.. .b .. .. | 0 2 | * * * * * 9 * | 0 0 0 0 2 0 0 0 2 0 | 0 0 0 0 2 1 0 1 b
.. .. .a .. | 0 2 | * * * * * * 18 | 0 0 0 0 0 1 0 1 1 1 | 0 0 1 0 1 0 1 1 a
---------------+-------+------------------+-------------------------+----------------
a.3o. .. .. | 3 0 | 3 0 0 0 0 0 0 | 6 * * * * * * * * * | 1 1 0 0 0 0 0 0 aaa
a. .. b. .. | 4 0 | 2 2 0 0 0 0 0 | * 9 * * * * * * * * | 1 0 1 0 0 0 0 0 abab
a. .. .. b. | 4 0 | 2 0 2 0 0 0 0 | * * 9 * * * * * * * | 0 1 0 1 0 0 0 0 abab
ab .. .. ..&#c | 2 2 | 1 0 0 2 1 0 0 | * * * 18 * * * * * * | 0 0 1 1 0 0 0 0 acbc
.. ob .. ..&#c | 1 2 | 0 0 0 2 0 1 0 | * * * * 18 * * * * * | 0 0 0 0 1 1 0 0 bbc
.. .. ba ..&#c | 2 2 | 0 0 1 2 0 0 1 | * * * * * 18 * * * * | 0 0 1 0 1 0 0 0 acbc
.. .. .. bo&#c | 2 1 | 0 1 0 2 0 0 0 | * * * * * * 18 * * * | 0 0 0 1 0 1 0 0 bbc
.b .. .a .. | 0 4 | 0 0 0 0 2 0 2 | * * * * * * * 9 * * | 0 0 1 0 0 0 1 0 abab
.. .b .a .. | 0 4 | 0 0 0 0 0 2 2 | * * * * * * * * 9 * | 0 0 0 0 1 0 0 1 abab
.. .. .a3.o | 0 3 | 0 0 0 0 0 0 3 | * * * * * * * * * 6 | 0 0 0 0 0 0 1 1 aaa
---------------+-------+------------------+-------------------------+----------------
a.3o. b. .. | 6 0 | 6 3 0 0 0 0 0 | 2 3 0 0 0 0 0 0 0 0 | 3 * * * * * * * (a,b)-trip
a.3o. .. b. | 6 0 | 6 0 3 0 0 0 0 | 2 0 3 0 0 0 0 0 0 0 | * 3 * * * * * * (a,b)-trip
ab .. ba ..&#c | 4 4 | 2 2 0 4 2 0 2 | 0 1 0 2 0 2 0 1 0 0 | * * 9 * * * * * recta
ab .. .. bo&#c | 4 2 | 2 0 2 4 1 0 0 | 0 0 1 2 0 0 2 0 0 0 | * * * 9 * * * * wedge
.. ob ba ..&#c | 2 4 | 0 1 0 4 0 2 2 | 0 0 0 0 2 2 0 0 1 0 | * * * * 9 * * * wedge
.. ob .. bo&#c | 2 2 | 0 0 1 4 0 1 0 | 0 0 0 0 2 0 2 0 0 0 | * * * * * 9 * * (b,c)-2ap
.b .. .a3.o | 0 6 | 0 0 0 0 3 0 6 | 0 0 0 0 0 0 0 3 0 2 | * * * * * * 3 * (a,b)-trip
.. .b .a3.o | 0 6 | 0 0 0 0 0 3 6 | 0 0 0 0 0 0 0 0 3 2 | * * * * * * * 3 (a,b)-trip
or o.3o. o.3o. & | 36 | 2 1 1 2 | 1 2 2 4 3 | 1 1 2 3 1 -----------------+----+-------------+----------------+----------- a. .. .. .. & | 2 | 36 * * * | 1 1 1 1 0 | 1 1 1 1 0 .. .. b. .. & | 2 | * 18 * * | 0 2 0 2 0 | 1 0 2 1 0 .. .. .. b. & | 2 | * * 18 * | 0 0 2 0 2 | 0 1 0 2 1 oo3oo oo3oo&#c | 2 | * * * 36 | 0 0 0 2 2 | 0 0 1 2 1 -----------------+----+-------------+----------------+----------- a.3o. .. .. & | 3 | 3 0 0 0 | 12 * * * * | 1 1 0 0 0 a. .. b. .. & | 4 | 2 2 0 0 | * 18 * * * | 1 0 1 0 0 a. .. .. b. & | 4 | 2 0 2 0 | * * 18 * * | 0 1 0 1 0 ab .. .. ..&#c & | 4 | 1 1 0 2 | * * * 36 * | 0 0 1 1 0 .. ob .. ..&#c & | 3 | 0 0 1 2 | * * * * 36 | 0 0 0 1 1 -----------------+----+-------------+----------------+----------- a.3o. b. .. & | 6 | 6 3 0 0 | 2 3 0 0 0 | 6 * * * * (a,b)-trip a.3o. .. b. & | 6 | 6 0 3 0 | 2 0 3 0 0 | * 6 * * * (a,b)-trip ab .. ba ..&#c | 8 | 4 4 0 4 | 0 2 0 4 0 | * * 9 * * recta ab .. .. bo&#c & | 6 | 2 1 2 4 | 0 0 1 2 2 | * * * 18 * wedge .. ob .. bo&#c & | 4 | 0 0 2 4 | 0 0 0 0 4 | * * * * 9 (b,c)-2ap
© 2004-2025 | top of page |