Acronym | ... |
Name | Leonardo polyhedron of type {4,5;31} |
© | |
Vertex figure | [(To,4o,To,t32)], [(Ti,4i,Ti,T32)], [(to,4o,to,t52)], [(ti,4i,ti,T52)] |
Face vector | 240, 600, 300 |
Confer | {4,5} (pesquat) |
The hull of each sheet of this polyhedron allows also for an all unit edge variant. that one then is the expanded rhombic triacontahedron. Thereby then the squares {4o} become rhombs, while the trapezia {(To2,to2)} become squares.
This toroidal polyhedron can be viewed as finite modwrap of the infinite hyperbolic tiling {4,5} (pesquat).
60 * * * | 2 1 2 0 0 0 0 0 | 2 2 1 0 0 0 [(To,4o,To,t32)] * 60 * * | 0 1 0 2 2 0 0 0 | 2 0 0 2 1 0 [(Ti,4i,Ti,T32)] * * 60 * | 0 0 2 0 0 2 1 0 | 0 2 1 0 0 2 [(to,4o,to,t52)] * * * 60 | 0 0 0 0 2 0 1 2 | 0 0 0 2 1 2 [(ti,4i,ti,T52)] ------------+---------------------------+------------------ 2 0 0 0 | 60 * * * * * * * | 1 1 0 0 0 0 1 1 0 0 | * 60 * * * * * * | 2 0 0 0 0 0 1 0 1 0 | * * 120 * * * * * | 0 1 1 0 0 0 0 2 0 0 | * * * 60 * * * * | 1 0 0 1 0 0 0 1 0 1 | * * * * 120 * * * | 0 0 0 1 1 0 0 0 2 0 | * * * * * 60 * * | 0 1 0 0 0 1 0 0 1 1 | * * * * * * 60 * | 0 0 0 0 0 2 0 0 0 2 | * * * * * * * 60 | 0 0 0 1 0 1 ------------+---------------------------+------------------ 2 2 0 0 | 1 2 0 1 0 0 0 0 | 60 * * * * * {(To2,Ti2)} 2 0 2 0 | 1 0 2 0 0 1 0 0 | * 60 * * * * {(To2,to2)} 2 0 2 0 | 0 0 4 0 0 0 0 0 | * * 30 * * * {(To,to)2} 0 2 0 2 | 0 0 0 1 2 0 0 1 | * * * 60 * * {(Ti2,ti2)} 0 2 0 2 | 0 0 0 0 4 0 0 0 | * * * * 30 * {(Ti,ti)2} 0 0 2 2 | 0 0 0 0 0 1 2 1 | * * * * * 60 {(to2,ti2)}
(combinatorically) 240 | 5 | 5 ----+-----+---- 2 | 600 | 2 ----+-----+---- 4 | 4 | 300
© 2004-2024 | top of page |