Acronym | ... |
Name | 2srix (?) |
Circumradius | sqrt[19+8 sqrt(5)] = 6.073594 |
General of army | srix |
Colonel of regiment | srix |
Confer |
|
Looks like a compound of 2 coincident small rhombated hexacosachora (srix). Indeed all but the Grünbaumian elements coincide by pairs. It occurs in different types: Type A has coincident pairs of pentagonal prisms (pip), while type B has coincident pairs of cuboctahedra (co). Type A even splits according to the used version of the Grünbaumian doubly covered cuboctahedral cells (2co): in type A1 all cuboctahedral triangles will be replaced by {6/2}, in type A2 only half of those.
Incidence matrix according to Dynkin symbol
x3β3x5o (type A1) both( . . . . ) | 7200 | 1 2 1 2 | 2 1 1 2 2 1 | 1 2 1 1 ----------------+------+---------------------+-------------------------------+---------------- both( x . . . ) | 2 | 3600 * * * | 2 0 1 0 0 0 | 1 2 0 0 both( . . x . ) | 2 | * 7200 * * | 1 1 0 1 0 0 | 1 1 1 0 sefa( x3β . . ) | 2 | * * 3600 * | 0 0 1 0 2 0 | 0 2 0 1 sefa( . β3x . ) | 2 | * * * 7200 | 0 0 0 1 1 1 | 0 1 1 1 ----------------+------+---------------------+-------------------------------+---------------- both( x . x . ) | 4 | 2 2 0 0 | 3600 * * * * * | 1 1 0 0 both( . . x5o ) | 5 | 0 5 0 0 | * 1440 * * * * | 1 0 1 0 x3β . . ♦ 6 | 3 0 3 0 | * * 1200 * * * | 0 2 0 0 . β3x . ♦ 6 | 0 3 0 3 | * * * 2400 * * | 0 1 1 0 sefa( x3β3x . ) | 4 | 0 0 2 2 | * * * * 3600 * | 0 1 0 1 sefa( . β3x5o ) | 5 | 0 0 0 5 | * * * * * 1440 | 0 0 1 1 ----------------+------+---------------------+-------------------------------+---------------- both( x . x5o ) ♦ 10 | 5 10 0 0 | 5 2 0 0 0 0 | 720 * * * x3β3x . ♦ 24 | 12 12 12 12 | 6 0 4 4 6 0 | * 600 * * . β3x5o ♦ 60 | 0 60 0 60 | 0 12 0 20 0 12 | * * 120 * sefa( x3β3x5o ) ♦ 10 | 0 0 5 10 | 0 0 0 0 5 2 | * * * 720 starting figure: x3x3x5o
β3β3x5o (type A2) both( . . . . ) | 7200 | 2 2 2 | 1 1 2 4 1 | 2 1 2 ----------------+------+----------------+--------------------------+------------- both( . . x . ) | 2 | 7200 * * | 1 0 1 1 0 | 1 1 1 sefa( s3s . . ) | 2 | * 7200 * | 0 1 0 2 0 | 2 0 1 sefa( . β3x . ) | 2 | * * 7200 | 0 0 1 1 1 | 1 1 1 ----------------+------+----------------+--------------------------+------------- both( . . x5o ) | 5 | 5 0 0 | 1440 * * * * | 0 1 1 both( s3s . . ) ♦ 3 | 0 3 0 | * 2400 * * * | 2 0 0 . β3x . ♦ 6 | 3 0 3 | * * 2400 * * | 1 1 0 sefa( β3β3x . ) | 4 | 1 2 1 | * * * 7200 * | 1 0 1 sefa( . β3x5o ) | 5 | 0 0 5 | * * * * 1440 | 0 1 1 ----------------+------+----------------+--------------------------+------------- β3β3x . ♦ 24 | 12 24 12 | 0 8 4 12 0 | 600 * * . β3x5o ♦ 60 | 60 0 60 | 12 0 20 0 12 | * 120 * sefa( β3β3x5o ) ♦ 10 | 5 5 5 | 1 0 0 5 1 | * * 1440 starting figure: x3x3x5o
x3o3x5β (type B) both( . . . . ) | 7200 | 2 2 2 | 1 2 1 2 2 1 | 1 2 1 1 ----------------+------+----------------+-------------------------------+---------------- both( x . . . ) | 2 | 7200 * * | 1 1 0 0 1 0 | 1 1 0 1 both( . . x . ) | 2 | * 7200 * | 0 1 1 1 0 0 | 1 1 1 0 sefa( . . x5β ) | 2 | * * 7200 | 0 0 0 1 1 1 | 0 1 1 1 ----------------+------+----------------+-------------------------------+---------------- both( x3o . . ) | 3 | 3 0 0 | 2400 * * * * * | 1 0 0 1 both( x . x . ) | 4 | 2 2 0 | * 3600 * * * * | 1 1 0 0 both( . o3x . ) | 3 | 0 3 0 | * * 2400 * * * | 1 0 1 0 . . x5β ♦ 10 | 0 5 5 | * * * 1440 * * | 0 1 1 0 sefa( x 2 x5β ) | 4 | 2 0 2 | * * * * 3600 * | 0 1 0 1 sefa( . o3x5β ) | 3 | 0 0 3 | * * * * * 2400 | 0 0 1 1 ----------------+------+----------------+-------------------------------+---------------- both( x3o3x . ) ♦ 12 | 12 12 0 | 4 6 4 0 0 0 | 600 * * * x 2 x5β ♦ 20 | 10 10 10 | 0 5 0 2 5 0 | * 720 * * . o3x5β ♦ 60 | 0 60 60 | 0 0 20 12 0 20 | * * 120 * sefa( x3o3x5β ) ♦ 12 | 12 0 12 | 4 0 0 0 6 4 | * * * 600 starting figure: x3o3x5x
© 2004-2025 | top of page |