Acronym | ... |
Name | 2srothat (?) |
Vertex figure | 2[6/2,4,6,4] |
Confer |
|
Looks like 2 coincident rhombitrihexagonal tilings (rothat), and indeed vertices, edges, {4} and {6} all coincide by pairs.
Incidence matrix according to Dynkin symbol
β6β3x (N → ∞) demi( . . . (a)) | 6N * | 1 2 0 1 | 1 0 1 2 demi( . . . (b)) | * 6N | 1 0 2 1 | 0 1 1 2 -----------------+-------+-------------+---------- both( . . x ) | 1 1 | 6N * * * | 0 0 1 1 sefa( s6s . (a)) | 2 0 | * 6N * * | 1 0 0 1 sefa( s6s . (b)) | 0 2 | * * 6N * | 0 1 0 1 sefa( . β3x ) | 1 1 | * * * 6N | 0 0 1 1 -----------------+-------+-------------+---------- s6s . (a) ♦ 6 0 | 0 6 0 0 | N * * * s6s . (b) ♦ 0 6 | 0 0 6 0 | * N * * . β3x ♦ 3 3 | 3 0 0 3 | * * 2N * sefa( β6β3x ) | 2 2 | 1 1 1 1 | * * * 6N
or both( . . . ) | 6N | 1 2 1 | 1 1 2 -----------------+----+----------+------- both( . . x ) | 2 | 3N * * | 0 1 1 sefa( s6s . ) & | 2 | * 6N * | 1 0 1 sefa( . β3x ) | 2 | * * 3N | 0 1 1 -----------------+----+----------+------- s6s . & ♦ 6 | 0 6 0 | N * * . β3x ♦ 6 | 3 0 3 | * N * sefa( β6β3x ) | 4 | 1 2 1 | * * 3N starting figure: x6x3x
x3β6x (N → ∞) demi( . . . (a)) | 6N * | 1 1 0 1 1 0 | 1 1 0 1 1 demi( . . . (b)) | * 6N | 1 0 1 1 0 1 | 1 0 1 1 1 -----------------+-------+-------------------+------------- both( x . . ) | 1 1 | 6N * * * * * | 1 0 0 1 0 demi( . . x (a)) | 2 0 | * 3N * * * * | 0 1 0 1 0 demi( . . x (b)) | 0 2 | * * 3N * * * | 0 0 1 1 0 sefa( x3β . ) | 1 1 | * * * 6N * * | 1 0 0 0 1 sefa( . s6x (a)) | 2 0 | * * * * 3N * | 0 1 0 0 1 sefa( . s6x (b)) | 0 2 | * * * * * 3N | 0 0 1 0 1 -----------------+-------+-------------------+------------- x3β . ♦ 3 3 | 3 0 0 3 0 0 | 2N * * * * . s6x (a) ♦ 6 0 | 0 3 0 0 3 0 | * N * * * . s6x (b) ♦ 0 6 | 0 0 3 0 0 3 | * * N * * both( x . x ) | 2 2 | 2 1 1 0 0 0 | * * * 3N * sefa( x3β6x ) | 2 2 | 0 0 0 2 1 1 | * * * * 3N
or both( . . . ) | 12N | 1 1 1 1 | 1 1 1 1 -----------------+-----+-------------+------------ both( x . . ) | 2 | 6N * * * | 1 0 1 0 both( . . x ) | 2 | * 6N * * | 0 1 1 0 sefa( x3β . ) | 2 | * * 6N * | 1 0 0 1 sefa( . s6x ) & | 2 | * * * 6N | 0 1 0 1 -----------------+-----+-------------+------------ x3β . ♦ 6 | 3 0 3 0 | 2N * * * . s6x & ♦ 6 | 0 3 0 3 | * 2N * * both( x . x ) | 4 | 2 2 0 0 | * * 3N * sefa( x3β6x ) | 4 | 0 0 2 2 | * * * 3N starting figure: x3x6x
© 2004-2024 | top of page |