| Acronym | ... |
| Name | 2srothat (?) |
| Vertex figure | 2[6/2,4,6,4] |
| Confer |
|
Looks like 2 coincident rhombitrihexagonal tilings (rothat), and indeed vertices, edges, {4} and {6} all coincide by pairs.
Incidence matrix according to Dynkin symbol
β6β3x (N → ∞)
demi( . . . (a)) | 6N * | 1 2 0 1 | 1 0 1 2
demi( . . . (b)) | * 6N | 1 0 2 1 | 0 1 1 2
-----------------+-------+-------------+----------
both( . . x ) | 1 1 | 6N * * * | 0 0 1 1
sefa( s6s . (a)) | 2 0 | * 6N * * | 1 0 0 1
sefa( s6s . (b)) | 0 2 | * * 6N * | 0 1 0 1
sefa( . β3x ) | 1 1 | * * * 6N | 0 0 1 1
-----------------+-------+-------------+----------
s6s . (a) ♦ 6 0 | 0 6 0 0 | N * * *
s6s . (b) ♦ 0 6 | 0 0 6 0 | * N * *
. β3x ♦ 3 3 | 3 0 0 3 | * * 2N *
sefa( β6β3x ) | 2 2 | 1 1 1 1 | * * * 6N
or
both( . . . ) | 6N | 1 2 1 | 1 1 2
-----------------+----+----------+-------
both( . . x ) | 2 | 3N * * | 0 1 1
sefa( s6s . ) & | 2 | * 6N * | 1 0 1
sefa( . β3x ) | 2 | * * 3N | 0 1 1
-----------------+----+----------+-------
s6s . & ♦ 6 | 0 6 0 | N * *
. β3x ♦ 6 | 3 0 3 | * N *
sefa( β6β3x ) | 4 | 1 2 1 | * * 3N
starting figure: x6x3x
x3β6x (N → ∞)
demi( . . . (a)) | 6N * | 1 1 0 1 1 0 | 1 1 0 1 1
demi( . . . (b)) | * 6N | 1 0 1 1 0 1 | 1 0 1 1 1
-----------------+-------+-------------------+-------------
both( x . . ) | 1 1 | 6N * * * * * | 1 0 0 1 0
demi( . . x (a)) | 2 0 | * 3N * * * * | 0 1 0 1 0
demi( . . x (b)) | 0 2 | * * 3N * * * | 0 0 1 1 0
sefa( x3β . ) | 1 1 | * * * 6N * * | 1 0 0 0 1
sefa( . s6x (a)) | 2 0 | * * * * 3N * | 0 1 0 0 1
sefa( . s6x (b)) | 0 2 | * * * * * 3N | 0 0 1 0 1
-----------------+-------+-------------------+-------------
x3β . ♦ 3 3 | 3 0 0 3 0 0 | 2N * * * *
. s6x (a) ♦ 6 0 | 0 3 0 0 3 0 | * N * * *
. s6x (b) ♦ 0 6 | 0 0 3 0 0 3 | * * N * *
both( x . x ) | 2 2 | 2 1 1 0 0 0 | * * * 3N *
sefa( x3β6x ) | 2 2 | 0 0 0 2 1 1 | * * * * 3N
or
both( . . . ) | 12N | 1 1 1 1 | 1 1 1 1
-----------------+-----+-------------+------------
both( x . . ) | 2 | 6N * * * | 1 0 1 0
both( . . x ) | 2 | * 6N * * | 0 1 1 0
sefa( x3β . ) | 2 | * * 6N * | 1 0 0 1
sefa( . s6x ) & | 2 | * * * 6N | 0 1 0 1
-----------------+-----+-------------+------------
x3β . ♦ 6 | 3 0 3 0 | 2N * * *
. s6x & ♦ 6 | 0 3 0 3 | * 2N * *
both( x . x ) | 4 | 2 2 0 0 | * * 3N *
sefa( x3β6x ) | 4 | 0 0 2 2 | * * * 3N
starting figure: x3x6x
© 2004-2025 | top of page |