Acronym squadedip, K-4.97 Name square - decagon duoprism Circumradius sqrt[(4+sqrt(5))/2] = 1.765796 General of army (is itself convex) Colonel of regiment (is itself locally convex) Confer general duoprisms: n,m-dip   2n,m-dip   2n,2m-dip   4,n-dip   4,2n-dip   10,n-dip Externallinks

Incidence matrix according to Dynkin symbol

```x4o x10o

. . .  . | 40 |  2  2 |  1  4 1 |  2 2
---------+----+-------+---------+-----
x . .  . |  2 | 40  * |  1  2 0 |  2 1
. . x  . |  2 |  * 40 |  0  2 1 |  1 2
---------+----+-------+---------+-----
x4o .  . |  4 |  4  0 | 10  * * |  2 0
x . x  . |  4 |  2  2 |  * 40 * |  1 1
. . x10o | 10 |  0 10 |  *  * 4 |  0 2
---------+----+-------+---------+-----
x4o x  . ♦  8 |  8  4 |  2  4 0 | 10 *
x . x10o ♦ 20 | 10 20 |  0 10 2 |  * 4
```

```x4o x10/9o

. . .    . | 40 |  2  2 |  1  4 1 |  2 2
-----------+----+-------+---------+-----
x . .    . |  2 | 40  * |  1  2 0 |  2 1
. . x    . |  2 |  * 40 |  0  2 1 |  1 2
-----------+----+-------+---------+-----
x4o .    . |  4 |  4  0 | 10  * * |  2 0
x . x    . |  4 |  2  2 |  * 40 * |  1 1
. . x10/9o | 10 |  0 10 |  *  * 4 |  0 2
-----------+----+-------+---------+-----
x4o x    . ♦  8 |  8  4 |  2  4 0 | 10 *
x . x10/9o ♦ 20 | 10 20 |  0 10 2 |  * 4
```

```x4/3o x10o

.   . .  . | 40 |  2  2 |  1  4 1 |  2 2
-----------+----+-------+---------+-----
x   . .  . |  2 | 40  * |  1  2 0 |  2 1
.   . x  . |  2 |  * 40 |  0  2 1 |  1 2
-----------+----+-------+---------+-----
x4/3o .  . |  4 |  4  0 | 10  * * |  2 0
x   . x  . |  4 |  2  2 |  * 40 * |  1 1
.   . x10o | 10 |  0 10 |  *  * 4 |  0 2
-----------+----+-------+---------+-----
x4/3o x  . ♦  8 |  8  4 |  2  4 0 | 10 *
x   . x10o ♦ 20 | 10 20 |  0 10 2 |  * 4
```

```x4/3o x10/9o

.   . .    . | 40 |  2  2 |  1  4 1 |  2 2
-------------+----+-------+---------+-----
x   . .    . |  2 | 40  * |  1  2 0 |  2 1
.   . x    . |  2 |  * 40 |  0  2 1 |  1 2
-------------+----+-------+---------+-----
x4/3o .    . |  4 |  4  0 | 10  * * |  2 0
x   . x    . |  4 |  2  2 |  * 40 * |  1 1
.   . x10/9o | 10 |  0 10 |  *  * 4 |  0 2
-------------+----+-------+---------+-----
x4/3o x    . ♦  8 |  8  4 |  2  4 0 | 10 *
x   . x10/9o ♦ 20 | 10 20 |  0 10 2 |  * 4
```

```x x x10o

. . .  . | 40 |  1  1  2 |  1  2  2 1 |  2 1 1
---------+----+----------+------------+-------
x . .  . |  2 | 20  *  * |  1  2  0 0 |  2 1 0
. x .  . |  2 |  * 20  * |  1  0  2 0 |  2 0 1
. . x  . |  2 |  *  * 40 |  0  1  1 1 |  1 1 1
---------+----+----------+------------+-------
x x .  . |  4 |  2  2  0 | 10  *  * * |  2 0 0
x . x  . |  4 |  2  0  2 |  * 20  * * |  1 1 0
. x x  . |  4 |  0  2  2 |  *  * 20 * |  1 0 1
. . x10o | 10 |  0  0 10 |  *  *  * 4 |  0 1 1
---------+----+----------+------------+-------
x x x  . ♦  8 |  4  4  4 |  2  2  2 0 | 10 * *
x . x10o ♦ 20 | 10  0 20 |  0 10  0 2 |  * 2 *
. x x10o ♦ 20 |  0 10 20 |  0  0 10 2 |  * * 2
```

```x4o x5x

. . . . | 40 |  2  1  1 |  1  2  2 1 | 1 1 2
--------+----+----------+------------+------
x . . . |  2 | 40  *  * |  1  1  1 0 | 1 1 1
. . x . |  2 |  * 20  * |  0  2  0 1 | 1 0 2
. . . x |  2 |  *  * 20 |  0  0  2 1 | 0 1 2
--------+----+----------+------------+------
x4o . . |  4 |  4  0  0 | 10  *  * * | 1 1 0
x . x . |  4 |  2  2  0 |  * 20  * * | 1 0 1
x . . x |  4 |  2  0  2 |  *  * 20 * | 0 1 1
. . x5x | 10 |  0  5  5 |  *  *  * 4 | 0 0 2
--------+----+----------+------------+------
x4o x . ♦  8 |  8  4  0 |  2  4  0 0 | 5 * *
x4o . x ♦  8 |  8  0  4 |  2  0  4 0 | * 5 *
x . x5x ♦ 20 | 10 10 10 |  0  5  5 2 | * * 4
```

```x x x5x

. . . . | 40 |  1  1  1  1 |  1  1  1  1  1 1 | 1 1 1 1
--------+----+-------------+------------------+--------
x . . . |  2 | 20  *  *  * |  1  1  1  0  0 0 | 1 1 1 0
. x . . |  2 |  * 20  *  * |  1  0  0  1  1 0 | 1 1 0 1
. . x . |  2 |  *  * 20  * |  0  1  0  1  0 1 | 1 0 1 1
. . . x |  2 |  *  *  * 20 |  0  0  1  0  1 1 | 0 1 1 1
--------+----+-------------+------------------+--------
x x . . |  4 |  2  2  0  0 | 10  *  *  *  * * | 1 1 0 0
x . x . |  4 |  2  0  2  0 |  * 10  *  *  * * | 1 0 1 0
x . . x |  4 |  2  0  0  2 |  *  * 10  *  * * | 0 1 1 0
. x x . |  4 |  0  2  2  0 |  *  *  * 10  * * | 1 0 0 1
. x . x |  4 |  0  2  0  2 |  *  *  *  * 10 * | 0 1 0 1
. . x5x | 10 |  0  0  5  5 |  *  *  *  *  * 4 | 0 0 1 1
--------+----+-------------+------------------+--------
x x x . ♦  8 |  4  4  4  0 |  2  2  0  2  0 0 | 5 * * *
x x . x ♦  8 |  4  4  0  4 |  2  0  2  0  2 0 | * 5 * *
x . x5x ♦ 20 | 10  0 10 10 |  0  5  5  0  0 2 | * * 2 *
. x x5x ♦ 20 |  0 10 10 10 |  0  0  0  5  5 2 | * * * 2
```