Acronym sidditdiddip Name small-ditrigonal-dodekicosidodecahedron prism Circumradius sqrt[(19+3 sqrt(5))/8] = 1.792631 Colonel of regiment siidip Externallinks

As abstract polytope sidditdiddip is isomorphic to gidditdiddip, thereby replacing retrograde pentagrams and decagons respectively by pentagons and decagrams, resp. replacing sidditdid by gidditdid, stip by pip, and dip by stiddip. – It also is isomorphic to saddiddip, thereby replacing retrograde pentagrams by retrograde pentagons, resp. replacing sidditdid by saddid and stip by pip. – Finally it is isomorphic to gaddiddip, thereby replacing retrograde pentagrams and decagons respectively by pentagrams and decagrams, resp. replacing sidditdid by gaddid and dip by stiddip.

Incidence matrix according to Dynkin symbol

```x x5/3o3x5*b

. .   . .    | 120 |  1   2   2 |  2  2  1  2  1 |  1  2  1 1
-------------+-----+------------+----------------+-----------
x .   . .    |   2 | 60   *   * |  2  2  0  0  0 |  1  2  1 0
. x   . .    |   2 |  * 120   * |  1  0  1  1  0 |  1  1  0 1
. .   . x    |   2 |  *   * 120 |  0  1  0  1  1 |  0  1  1 1
-------------+-----+------------+----------------+-----------
x x   . .    |   4 |  2   2   0 | 60  *  *  *  * |  1  1  0 0
x .   . x    |   4 |  2   0   2 |  * 60  *  *  * |  0  1  1 0
. x5/3o .    |   5 |  0   5   0 |  *  * 24  *  * |  1  0  0 1
. x   . x5*b |  10 |  0   5   5 |  *  *  * 24  * |  0  1  0 1
. .   o3x    |   3 |  0   0   3 |  *  *  *  * 40 |  0  0  1 1
-------------+-----+------------+----------------+-----------
x x5/3o .    ♦  10 |  5  10   0 |  5  0  2  0  0 | 12  *  * *
x x   . x5*b ♦  20 | 10  10  10 |  5  5  0  2  0 |  * 12  * *
x .   o3x    ♦   6 |  3   0   6 |  0  3  0  0  2 |  *  * 20 *
. x5/3o3x5*b ♦  60 |  0  60  60 |  0  0 12 12 20 |  *  *  * 2
```

```x x5/2o3/2x5*b

. .   .   .    | 120 |  1   2   2 |  2  2  1  2  1 |  1  2  1 1
---------------+-----+------------+----------------+-----------
x .   .   .    |   2 | 60   *   * |  2  2  0  0  0 |  1  2  1 0
. x   .   .    |   2 |  * 120   * |  1  0  1  1  0 |  1  1  0 1
. .   .   x    |   2 |  *   * 120 |  0  1  0  1  1 |  0  1  1 1
---------------+-----+------------+----------------+-----------
x x   .   .    |   4 |  2   2   0 | 60  *  *  *  * |  1  1  0 0
x .   .   x    |   4 |  2   0   2 |  * 60  *  *  * |  0  1  1 0
. x5/2o   .    |   5 |  0   5   0 |  *  * 24  *  * |  1  0  0 1
. x   .   x5*b |  10 |  0   5   5 |  *  *  * 24  * |  0  1  0 1
. .   o3/2x    |   3 |  0   0   3 |  *  *  *  * 40 |  0  0  1 1
---------------+-----+------------+----------------+-----------
x x5/2o   .    ♦  10 |  5  10   0 |  5  0  2  0  0 | 12  *  * *
x x   .   x5*b ♦  20 | 10  10  10 |  5  5  0  2  0 |  * 12  * *
x .   o3/2x    ♦   6 |  3   0   6 |  0  3  0  0  2 |  *  * 20 *
. x5/2o3/2x5*b ♦  60 |  0  60  60 |  0  0 12 12 20 |  *  *  * 2
```