Acronym gidditdiddip Name great-ditrigonal-dodekicosidodecahedron prism Circumradius sqrt[(19-3 sqrt(5))/8] = 1.239546 Colonel of regiment (is itself locally convex – other uniform polyhedral members: giidip   & others) Externallinks

As abstract polytope gidditdiddip is isomorphic to sidditdiddip, thereby replacing pentagons and decagrams respectively by retrograde pentagrams and decagons, resp. replacing gidditdid by sidditdid, pip by stip, and stiddip by dip. – It also is isomorphic to saddiddip, thereby replacing pentagons and decagrams respectively by retrograde pentagons and decagons, resp. replacing gidditdid by saddid and stiddip by dip. – Finally it is isomorphic to gaddiddip, thereby replacing pentagons by pentagrams, resp. replacing gidditdid by gaddid and pip by stip.

Incidence matrix according to Dynkin symbol

```x x5o3x5/3*b

. . . .      | 120 |  1   2   2 |  2  2  1  2  1 |  1  2  1 1
-------------+-----+------------+----------------+-----------
x . . .      |   2 | 60   *   * |  2  2  0  0  0 |  1  2  1 0
. x . .      |   2 |  * 120   * |  1  0  1  1  0 |  1  1  0 1
. . . x      |   2 |  *   * 120 |  0  1  0  1  1 |  0  1  1 1
-------------+-----+------------+----------------+-----------
x x . .      |   4 |  2   2   0 | 60  *  *  *  * |  1  1  0 0
x . . x      |   4 |  2   0   2 |  * 60  *  *  * |  0  1  1 0
. x5o .      |   5 |  0   5   0 |  *  * 24  *  * |  1  0  0 1
. x . x5/3*b |  10 |  0   5   5 |  *  *  * 24  * |  0  1  0 1
. . o3x      |   3 |  0   0   3 |  *  *  *  * 40 |  0  0  1 1
-------------+-----+------------+----------------+-----------
x x5o .      ♦  10 |  5  10   0 |  5  0  2  0  0 | 12  *  * *
x x . x5/3*b ♦  20 | 10  10  10 |  5  5  0  2  0 |  * 12  * *
x . o3x      ♦   6 |  3   0   6 |  0  3  0  0  2 |  *  * 20 *
. x5o3x5/3*b ♦  60 |  0  60  60 |  0  0 12 12 20 |  *  *  * 2
```

```x x5/4o3/2x5/3*b

. .   .   .      | 120 |  1   2   2 |  2  2  1  2  1 |  1  2  1 1
-----------------+-----+------------+----------------+-----------
x .   .   .      |   2 | 60   *   * |  2  2  0  0  0 |  1  2  1 0
. x   .   .      |   2 |  * 120   * |  1  0  1  1  0 |  1  1  0 1
. .   .   x      |   2 |  *   * 120 |  0  1  0  1  1 |  0  1  1 1
-----------------+-----+------------+----------------+-----------
x x   .   .      |   4 |  2   2   0 | 60  *  *  *  * |  1  1  0 0
x .   .   x      |   4 |  2   0   2 |  * 60  *  *  * |  0  1  1 0
. x5/4o   .      |   5 |  0   5   0 |  *  * 24  *  * |  1  0  0 1
. x   .   x5/3*b |  10 |  0   5   5 |  *  *  * 24  * |  0  1  0 1
. .   o3/2x      |   3 |  0   0   3 |  *  *  *  * 40 |  0  0  1 1
-----------------+-----+------------+----------------+-----------
x x5/4o   .      ♦  10 |  5  10   0 |  5  0  2  0  0 | 12  *  * *
x x   .   x5/3*b ♦  20 | 10  10  10 |  5  5  0  2  0 |  * 12  * *
x .   o3/2x      ♦   6 |  3   0   6 |  0  3  0  0  2 |  *  * 20 *
. x5/4o3/2x5/3*b ♦  60 |  0  60  60 |  0  0 12 12 20 |  *  *  * 2
```