Acronym guti Name great tetrakisicositetrachoron Circumradius sqrt[4+sqrt(2)] = 2.326846 Colonel of regiment ditdi Externallinks

As abstract polytope guti is isomorphic to suti, thereby replacing octagons by octagrams, and thus tic by quith, girco by quitco and additionally querco by sirco. – As such guti is a lieutenant.

Incidence matrix according to Dynkin symbol

```x3x4x3o4/3*a

. . . .      | 576 |   2   1   2 |   2   2   1   2   1 |  2  1  1  1
-------------+-----+-------------+---------------------+------------
x . . .      |   2 | 576   *   * |   1   1   1   0   0 |  1  1  1  0
. x . .      |   2 |   * 288   * |   2   0   0   2   0 |  2  1  0  1
. . x .      |   2 |   *   * 576 |   0   1   0   1   1 |  1  0  1  1
-------------+-----+-------------+---------------------+------------
x3x . .      |   6 |   3   3   0 | 192   *   *   *   * |  1  1  0  0
x . x .      |   4 |   2   0   2 |   * 288   *   *   * |  1  0  1  0
x . . o4/3*a |   4 |   4   0   0 |   *   * 144   *   * |  0  1  1  0
. x4x .      |   8 |   0   4   4 |   *   *   * 144   * |  1  0  0  1
. . x3o      |   3 |   0   0   3 |   *   *   *   * 192 |  0  0  1  1
-------------+-----+-------------+---------------------+------------
x3x4x .      ♦  48 |  24  24  24 |   8  12   0   6   0 | 24  *  *  *
x3x . o4/3*a ♦  24 |  24  12   0 |   8   0   6   0   0 |  * 24  *  *
x . x3o4/3*a ♦  24 |  24   0  24 |   0  12   6   0   8 |  *  * 24  *
. x4x3o      ♦  24 |   0  12  24 |   0   0   0   6   8 |  *  *  * 24
```

```x3x4x3/2o4*a

. . .   .    | 576 |   2   1   2 |   2   2   1   2   1 |  2  1  1  1
-------------+-----+-------------+---------------------+------------
x . .   .    |   2 | 576   *   * |   1   1   1   0   0 |  1  1  1  0
. x .   .    |   2 |   * 288   * |   2   0   0   2   0 |  2  1  0  1
. . x   .    |   2 |   *   * 576 |   0   1   0   1   1 |  1  0  1  1
-------------+-----+-------------+---------------------+------------
x3x .   .    |   6 |   3   3   0 | 192   *   *   *   * |  1  1  0  0
x . x   .    |   4 |   2   0   2 |   * 288   *   *   * |  1  0  1  0
x . .   o4*a |   4 |   4   0   0 |   *   * 144   *   * |  0  1  1  0
. x4x   .    |   8 |   0   4   4 |   *   *   * 144   * |  1  0  0  1
. . x3/2o    |   3 |   0   0   3 |   *   *   *   * 192 |  0  0  1  1
-------------+-----+-------------+---------------------+------------
x3x4x   .    ♦  48 |  24  24  24 |   8  12   0   6   0 | 24  *  *  *
x3x .   o4*a ♦  24 |  24  12   0 |   8   0   6   0   0 |  * 24  *  *
x . x3/2o4*a ♦  24 |  24   0  24 |   0  12   6   0   8 |  *  * 24  *
. x4x3/2o    ♦  24 |   0  12  24 |   0   0   0   6   8 |  *  *  * 24

x3/2o4x3x4*a

.   . . .    | 576 |   2   2   1 |   1   2   2   1   2 |  1  1  2  1
-------------+-----+-------------+---------------------+------------
x   . . .    |   2 | 576   *   * |   1   1   1   0   0 |  1  1  1  0
.   . x .    |   2 |   * 576   * |   0   1   0   1   1 |  1  0  1  1
.   . . x    |   2 |   *   * 288 |   0   0   2   0   2 |  0  1  2  1
-------------+-----+-------------+---------------------+------------
x3/2o . .    |   3 |   3   0   0 | 192   *   *   *   * |  1  1  0  0
x   . x .    |   4 |   2   2   0 |   * 288   *   *   * |  1  0  1  0
x   . . x4*a |   8 |   4   0   4 |   *   * 144   *   * |  0  1  1  0
.   o4x .    |   4 |   0   4   0 |   *   *   * 144   * |  1  0  0  1
.   . x3x    |   6 |   0   3   3 |   *   *   *   * 192 |  0  0  1  1
-------------+-----+-------------+---------------------+------------
x3/2o4x .    ♦  24 |  24  24   0 |   8  12   0   6   0 | 24  *  *  *
x3/2o . x4*a ♦  24 |  24   0  12 |   8   0   6   0   0 |  * 24  *  *
x   . x3x4*a ♦  48 |  24  24  24 |   0  12   6   0   8 |  *  * 24  *
.   o4x3x    ♦  24 |   0  24  12 |   0   0   0   6   8 |  *  *  * 24
```