Return to Home


Sections: Enumeration | Tetratiles, Hexatiles, Octatiles| Decatiles | Dodecatiles | Tetradecatiles | Hexadecatiles | Octadecatiles | Icosatiles
22-tiles | 24-tiles | 26-tiles | 28-tiles | 30-tiles | 32-tiles | 34-tiles | 36-tiles | 38-tiles | 40-tiles
Triangles | Squares & rhombi | Pentagons & Near-misses | Hexagons | Heptagons
Lenses & Trilenses | Orthogons

Strictly Convex Polytiles

Enumeration

This table shows the enumeration of strictly-convex p-tiles, by sides with a brute-force search. Chiral pairs are counted as 1. Digon are excluded.

The highest-sided strictly convex p-tile is a regular p-gon. Identical polygons can repeat between p-tile families as multiplies. For instance, a square is the tetratile 1^4 and octatile 2^4, and dodecatile 3^4, etc.

You can see the counts generally increase exponentially, but not always consecutively. For instance there are more 24-tiles than 26-tiles, and more 30-tiles than 32 tiles.

Counts of convex p-tiles by sides
p Total  Sides
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
4 1   1
6 3 1 1   1  
8 4   2   1 1
10 7   2 1 2   1   1
12 16 1 3 1 4 1 3 1 1   1
14 17 3 4 1 4 3   1 1
16 28 4 5 8 5   4 1 1
18 70 1 4 1 9 4 12 6 12 4 9 1 4 1 1 1
20 85 5 1 8 1 16 2 17 2 16 1 8 1 5 1 1
22 125 5 10 20 26 1 26 20 10 5 1 1
24 392 1 6 2 15 8 33 20 50 27 66 27 50 20 33 8 15 2 6 1 1 1
26 379 6 14 35 57 76 1 76 57 35 14 6 1 1
28 704 7 16 1 47 1 79 3 126 4 134 4 126 3 79 1 47 1 16 7 1 1
30 3359 1 7 3 24 17 71 60 173 145 329 249 442 315 442 249 329 145 173 60 71 17 24 3 7 1 1 1
32 2248 8 21 72 147 280 375 440 375 280 147 72 21 8 1 1
34 4111 8 24 84 196 392 600 750 1 750 600 392 196 84 24 8 1 1
36 18510 1 9 3 32 21 116 90 322 260 775 599 1384 1073 2024 1392 2306 1392 2024 1073 1384 599 775 260 322 90 116 21 32 3 9 1 1 1
38 14309 9 9 30 120 324 756 1368 2052 2494 1 2494 2052 1368 756 324 120 30 0 9 0 1
40 30820 0 10 1 33 2 145 14 409 49 1036 147 2001 315 3300 521 4340 667 4838 667 4340 521 3300 315 2001 147 1036 49 409 14 145 2 33 1 10 0 1 0 1


Tetratiles, Hexatiles and Octatiles

Polytiles of the form a.b^2 are rhombi, alternating 2 angles.


Sets of convex tetratiles, hexatiles, and octatiles

Convex Tetratile
Sides r8 Total
4 1 1
Total 1 1

Convex Hexatile
Sides r12 r6 d4 Total
3 1 1
4 1 1
6 1 1
Total 1 1 1 3

Convex Octatile by sides and symmetry
Sides r16 r8 i4 d4 Total
4 1 1 2
6 1 1
8 1 1
Total 1 1 1 1 4


Decatiles

There are 7 convex decatiles, grouped by sides:

There is no special names for the irregular hexagons. The form a.(1^c)^2 , like 3.1.1^2 might be called a polygonal-lens, approximating 2 attached circular arcs.

Convex Decatiles by sides and symmetry
Sides r20 r10 i4 d4 Total
4 2 2
5 1 1
6 2 2
8 1 1
10 1 1
Total 1 1 2 3 7


Set of convex decatiles


Dodecatiles

There are 16 convex dodecatiles, grouped by sides:

Polytiles of the form a.b^n are called isotoxal, having one edge type withing its symmetry, and 2 vertex types which alternate.

The decagon  21111^2 , octagon 3111^2, and hexagon 411^2 can be called polygonal-lens.

Convex Dodecatiles by sides and symmetry
Sides r24 r12 r8 r6 p4 i6 i4 i2 d8 d6 d4 g2 Total
3 1 1
4 1 2 3
5 1 1
6 1 1 1 1 4
7 1 1
8 1 1 1 3
9 1 1
10 1 1
12 1 1
Total 1 1 1 1 1 1 2 2 1 1 3 1 16


Set of convex dodecatiles


Tetradecatile

There are 17 tetradecatiles, grouped by sides:

Convex Tetradecatiles by sides and symmetry
Sides r28 r14 i4 d4 g2 Total
4 3 3
6 3 1 4
7 1 1
8 3 1 4
10 3 3
12 1 1
14 1 1
Total 1 1 6 7 2 17


Hexadecatiles

There are 28 hexadecatiles, grouped by sides:

Convex Hexadecatiles by sides and symmetry
Sides r32 r16 r8 p4 i8 i4 d8 d4 g2 Total
4 1 3 4
6 3 2 5
8 1 1 1 3 2 8
10 3 2 5
12 1 1 2 4
14 1 1
16 1 1
Total 1 1 1 2 1 7 1 8 6 28


Octadecatiles

There are 70 octadecatiles, with 3,4,5,6,7,8,9,10,11,12,13,14,15,17,18 sides.

Convex Octadecatiles by sides and symmetry
Sides r36 r18 r12 r6 p6 p2 i6 i4 i2 d12 d6 d4 d2 g3 g2 a1 Total
3 1 1
4 4 4
5 1 1
6 1 3 2 3 9
7 3 1 4
8 1 6 1 4 12
9 1 1 1 3 6
10 6 2 4 12
11 3 1 4
12 1 1 1 3 3 9
13 1 1
14 4 4
15 1 1
16 1 1
18 1 1
Total 1 1 1 1 1 1 2 13 6 1 3 14 3 1 14 7 70


Icosatiles

There are 85 icosatiles, grouped by sides:

Convex Icosatiles by sides and symmetry
Sides r40 r20 r10 r8 p4 i10 i8 i4 i2 d10 d8 d4 g2 Total
4 1 4 5
5 1 1
6 4 4 8
7 1 1
8 2 2 6 6 16
9 2 2
10 1 5 1 10 17
11 2 2
12 2 2 6 6 16
13 1 1
14 4 4 8
15 1 1
16 2 1 2 5
18 1 1
20 1 1
Total 1 1 1 1 6 1 2 14 6 1 3 18 30 85


22-tiles

There are 125 22-tiles.

Convex 22-tiles by sides and symmetry
Sides r44 r22 i4 d4 g2 Total
4 5 5
6 5 5 10
8 10 10 20
10 10 16 26
11 1 1
12 10 16 26
14 10 10 20
16 5 5 10
18 5 5
20 1 1
22 1 1
Total 1 1 30 31 62 125


24-tiles

There are 392 24-tiles.

Convex 24-tiles by sides and symmetry
Sides r48 r24 r16 r12 r8 p8 p6 p4 p2 i12 i8 i6 i4 i2 d16 d12 d8 d6 d4 d2 g4 g3 g2 a1 Total
4 1 5 6
5 1 1 2
6 1 4 3 7 15
7 4 4 8
8 1 2 1 2 10 1 14 2 33
9 3 3 2 12 20
10 1 10 8 28 3 50
11 8 19 27
12 1 1 4 1 1 1 3 13 1 1 2 29 8 66
13 8 19 27
14 2 10 7 28 3 50
15 3 3 2 12 20
16 1 4 1 1 1 8 1 14 2 33
17 4 4 8
18 1 1 4 2 7 15
19 1 1 2
20 2 1 3 6
21 1 1
22 1 1
24 1 1
Total 1 1 1 1 1 1 2 12 6 1 2 7 29 32 1 1 3 8 39 18 1 6 127 90 391


26-tiles

There are 379 26-tiles.

Convex 26-tiles by sides and symmetry
Sides r52 r26 i4 d4 g2 Total
4 6 6
6 6 8 14
8 15 20 35
10 15 42 57
12 20 56 76
13 1 1
14 20 56 76
16 15 42 57
18 15 20 35
20 6 8 14
22 6 6
24 1 1
26 1 1
Total 1 1 62 63 252 379


28-tiles

There are 704 28-tiles.

Convex 28-tiles by sides and symmetry
Sides r56 r28 r14 r8 p4 i14 i8 i4 i2 d14 d8 d4 g4 g2 a1 Total
4 1 6 7
6 6 10 16
7 1 1
8 3 3 15 26 47
9 1 1
10 15 64 79
11 3 3
12 6 3 26 1 90 126
13 3 1 4
14 1 19 1 113 134
15 3 1 4
16 10 3 22 1 90 126
17 3 3
18 15 64 79
19 1 1
20 6 3 12 26 47
21 1 1
22 6 10 16
24 3 1 3 7
26 1 1
28 1 1
Total 1 1 1 1 28 1 6 62 14 1 7 84 2 493 2 704


30-tiles

There are 3359 30-tiles.

Convex 30-tiles by sides and symmetry
Sides r60 r30 r20 r12 r10 r6 p10 p6 p2 i12 i10 i6 i4 i2 d20 d12 d10 d6 d4 d2 g5 g3 g2 a1 Total
3 1 1
4 7 7
5 1 2 3
6 1 6 4 1 12 24
7 8 9 17
8 3 21 4 35 8 71
9 4 6 4 46 60
10 1 2 20 2 20 90 38 173
11 23 122 145
12 2 11 2 6 33 13 6 150 106 329
13 25 224 249
14 8 35 36 197 166 442
15 1 1 5 30 1 10 267 315
16 20 35 24 197 166 442
17 25 224 249
18 2 6 2 33 6 18 6 150 106 329
19 23 122 145
20 1 12 1 1 20 10 90 38 173
21 4 6 4 46 60
22 2 21 5 35 8 71
23 8 9 17
24 2 1 1 2 6 12 24
25 1 2 3
26 7 7
27 1 1
28 1 1
30 1 1
Total 1 1 1 1 1 1 1 6 65 2 2 14 122 154 1 3 3 18 123 131 1 30 968 1709 3359


32-tiles

There are 2248 32-tiles:

Convex 32-tiles by sides and symmetry
Sides r64 r32 r16 r8 p8 p4 i16 i8 i4 d16 d8 d4 g4 g2 Total
4 1 7 8
6 7 14 21
8 1 3 3 21 44 72
10 21 126 147
12 9 3 44 2 222 280
14 35 340 375
16 1 1 16 1 3 48 2 368 440
18 35 340 375
20 16 3 37 2 222 280
22 21 126 147
24 1 9 1 2 15 44 72
26 7 14 21
28 3 1 4 8
30 1 1
32 1 1
Total 1 1 1 1 2 56 1 7 127 1 8 176 6 1860 2248


34-tiles

There are 4111 34-tiles:


36-tiles

There are 18510 36-tiles


38-tiles

There are 14309 38-tiles


40-tiles

There are 30820 40-tiles


Equilateral triangles

The only equilateral triangle is regular. It can be constructed as 3k-tiles: k^3, shown for 6,9,12,15,18,21.


Squares and rhombi

For a given p-tiles, there are int(p/2) rhombi, p:a.b^2, where p=2(a+b). If p/2 is even, one of them is a square. A rhombus has d4 symmetry.


Sets of rhombi, p=4..12


Pentagons

There are a relatively few number of strictly-convex equilateral pentagons. All of them besides a regular pentagon can be dissected into an equilateral triangle of a rhombus, so only occur for p-tiles with p as a multiple of 3. The only equilateral pentagon with bilateral symmetry, i2, is 12:4.1.3.3.1, as a triangle and square. The remainder have no symmetry, a1.


Set of convex equilateral pentagons, p=4...100

Near-misses

There are a few near-misses, given a more generous tolerance for closing.

These can be considered partial polytiles, with one edge length non-unit length, and two angles not quite whole divisors of a full circle


Near-miss pentagonal polytiles


Hexagons


Heptagons


Lenses

Here, a convex lens polytile can be seen in the form p:a.(1^b)^2, with p=2(a+b). Lenses can only have an even number of sides, specifically a 2(1+b)-gon. If b=1, a lens is a rhombus. When a=1, it becomes regular. The largest nonregular lenses, a=2, are (p-2)-gons. A lens will have either d4 or i4 symmetry, depending on the number of sides.

A lens can be constructed as an extended digon: 2k:k^2!(1^b), where b=1...k.


Set of lenses, a=2, p=4..16

Trilenses

A convex trilens polytile can be seen of the form p:a.(1^b)^3, with p=3(a+b). Trilenses have sides as a multiple of 3, specifically 3(1+b)-gon. If b=0, it is a triangle. If b=1, it is an isotoxal hexagon. If a=1, it becomes regular. The largest nonregular trilenses, a=2, are (p-3)-gons. A trilens will have either d6 or i6 symmetry, depending on the number of sides.

A trilens can be construcated as an extended triangle: 3k:k^3!(1^b), where b=1..k.

This can generalize into a k-lens of the form p:a.(1^b)^k, where p=k(a+b).


Set of trilenses


Orthogons

Here a convex orthogon is defined as a convex polygon with two orthogonal lines of reflection. There are int(p/4) strictly-convex orthogons among the strictly convex p-tiles. They can have symmetry p4,i4,d4. A p-tile orthogon is a (p-4)-gon.


Set of orthogons

© 2020-2021 Created by Tom Ruen