Acronym ... Name hyperbolic quarter order 6 square tiling ` ©` Vertex figure [3,4,6,6,4] Externallinks

This tiling can also be described as s4o6s', i.e. as sequential applications of alternated facetings, according to x4o6xs4o6x (= x6x6o) → x6s'6o (cf. below), resp. according to x4o6xx4o6s' (= x3o4x4*a) → x3o4s4*a (cf. below).

Incidence matrix according to Dynkin symbol

```x6s6o   (N → ∞)

demi( . . . ) | 6N |  1  2  2 |  2  1  2
--------------+----+----------+---------
demi( x . . ) |  2 | 3N  *  * |  2  0  0
sefa( x6s . ) |  2 |  * 6N  * |  1  0  1
sefa( . s6o ) |  2 |  *  * 6N |  0  1  1
--------------+----+----------+---------
x6s .   |  6 |  3  3  0 | 2N  *  *
. s6o   |  3 |  0  0  3 |  * 2N  *
sefa( x6s6o ) |  4 |  0  2  2 |  *  * 3N

starting figure: x6x6o
```

```x3o4s4*a   (N → ∞)

demi( . . .    ) | 6N |  2  1  2 |  1  2  2
-----------------+----+----------+---------
demi( x . .    ) |  2 | 6N  *  * |  1  1  0
. o4s      |  2 |  * 3N  * |  0  0  2
sefa( x . s4*a ) |  2 |  *  * 6N |  0  1  1
-----------------+----+----------+---------
demi( x3o .    ) |  3 |  3  0  0 | 2N  *  *
x . s4*a   |  4 |  2  0  2 |  * 3N  *
sefa( x3o4s4*a ) |  6 |  0  3  3 |  *  * 2N

starting figure: x3o4x4*a
```

```x3xØx3oØ*a   (N → ∞)

. . . .    | 6N |  2  1  2 |  2  2  1
-----------+----+----------+---------
x . . .    |  2 | 6N  *  * |  1  1  0
. x . .    |  2 |  * 3N  * |  2  0  0
. . x .    |  2 |  *  * 6N |  0  1  1
-----------+----+----------+---------
x3x . .    |  6 |  3  3  0 | 2N  *  *
x . x .    |  4 |  2  0  2 |  * 3N  *
. . x3o    |  3 |  0  0  3 |  *  * 2N
```