| Acronym | ... |
| Name | hyperbolic quarter order 6 square tiling |
| |
| Vertex figure | [3,4,6,6,4] |
|
External links |
|
This tiling can also be described as s4o6s', i.e. as sequential applications of alternated facetings, according to x4o6x → s4o6x (= x6x6o) → x6s'6o (cf. below), resp. according to x4o6x → x4o6s' (= x3o4x4*a) → x3o4s4*a (cf. below).
Incidence matrix according to Dynkin symbol
x6s6o (N → ∞)
demi( . . . ) | 6N | 1 2 2 | 2 1 2
--------------+----+----------+---------
demi( x . . ) | 2 | 3N * * | 2 0 0
sefa( x6s . ) | 2 | * 6N * | 1 0 1
sefa( . s6o ) | 2 | * * 6N | 0 1 1
--------------+----+----------+---------
x6s . | 6 | 3 3 0 | 2N * *
. s6o | 3 | 0 0 3 | * 2N *
sefa( x6s6o ) | 4 | 0 2 2 | * * 3N
starting figure: x6x6o
x3o4s4*a (N → ∞)
demi( . . . ) | 6N | 2 1 2 | 1 2 2
-----------------+----+----------+---------
demi( x . . ) | 2 | 6N * * | 1 1 0
. o4s | 2 | * 3N * | 0 0 2
sefa( x . s4*a ) | 2 | * * 6N | 0 1 1
-----------------+----+----------+---------
demi( x3o . ) | 3 | 3 0 0 | 2N * *
x . s4*a | 4 | 2 0 2 | * 3N *
sefa( x3o4s4*a ) | 6 | 0 3 3 | * * 2N
starting figure: x3o4x4*a
x3xØx3oØ*a (N → ∞) . . . . | 6N | 2 1 2 | 2 2 1 -----------+----+----------+--------- x . . . | 2 | 6N * * | 1 1 0 . x . . | 2 | * 3N * | 2 0 0 . . x . | 2 | * * 6N | 0 1 1 -----------+----+----------+--------- x3x . . | 6 | 3 3 0 | 2N * * x . x . | 4 | 2 0 2 | * 3N * . . x3o | 3 | 0 0 3 | * * 2N
© 2004-2025 | top of page |