Acronym osquat
Name hyperbolic order 8 square tiling
 
  ©
Circumradius sqrt[1-sqrt(2)]/2 = 0.321797 i
Vertex figure [48]
Dual o4o8x
Confer
more general:
x4oPo   x4o2Po  
general polytopal classes:
regular   noble polytopes  
External
links
wikipedia

There exists a regular modwrap of this tiling, obtained by identifying every 8th vertex on each hole. it allows a representation as infinite regular skew polyhedron, which happens to be facial subset of the hyperbolic small prismated dissquare-tiling honeycomb.


Incidence matrix according to Dynkin symbol

x4o8o   (N → ∞)

. . . | N |  8 |  8
------+---+----+---
x . . | 2 | 4N |  2
------+---+----+---
x4o . | 4 |  4 | 2N

snubbed forms: s4o8o

x4o4o4*a   (N → ∞)

. . .    | N |  8 | 4 4
---------+---+----+----
x . .    | 2 | 4N | 1 1
---------+---+----+----
x4o .    | 4 |  4 | N *
x . o4*a | 4 |  4 | * N

snubbed forms: s4o4o4*a

o4o8s   (N → ∞)

demi( . . . ) | N |  8 | 4 4
--------------+---+----+----
sefa( . o8s ) | 2 | 4N | 1 1
--------------+---+----+----
      . o8s   | 4 |  4 | N *
sefa( o4o8s ) | 4 |  4 | * N

starting figure: o4o8x

o8s8o   (N → ∞)

demi( . . . ) | 2N |  4  4 | 2 2  4
--------------+----+-------+-------
sefa( o8s . ) |  2 | 4N  * | 1 0  1
sefa( . s8o ) |  2 |  * 4N | 0 1  1
--------------+----+-------+-------
      o8s .   |  4 |  4  0 | N *  *
      . s8o   |  4 |  0  4 | * N  *
sefa( o8s8o ) |  4 |  2  2 | * * 2N

starting figure: o8x8o

xØo4oØx   (N → ∞)

. . . . | N |  4  4 |  8
--------+---+-------+---
x . . . | 2 | 2N  * |  2
. . . x | 2 |  * 2N |  2
--------+---+-------+---
x . . x | 4 |  2  2 | 2N

© 2004-2025
top of page