Acronym | osquat |
Name | hyperbolic order 8 square tiling |
© | |
Circumradius | sqrt[1-sqrt(2)]/2 = 0.321797 i |
Vertex figure | [48] |
Dual | o4o8x |
Confer |
|
External links |
There exists a regular modwrap of this tiling, obtained by identifying every 8th vertex on each hole. it allows a representation as infinite regular skew polyhedron, which happens to be facial subset of the hyperbolic small prismated dissquare-tiling honeycomb.
Incidence matrix according to Dynkin symbol
x4o8o (N → ∞) . . . | N | 8 | 8 ------+---+----+--- x . . | 2 | 4N | 2 ------+---+----+--- x4o . | 4 | 4 | 2N snubbed forms: s4o8o
x4o4o4*a (N → ∞) . . . | N | 8 | 4 4 ---------+---+----+---- x . . | 2 | 4N | 1 1 ---------+---+----+---- x4o . | 4 | 4 | N * x . o4*a | 4 | 4 | * N snubbed forms: s4o4o4*a
o4o8s (N → ∞) demi( . . . ) | N | 8 | 4 4 --------------+---+----+---- sefa( . o8s ) | 2 | 4N | 1 1 --------------+---+----+---- . o8s | 4 | 4 | N * sefa( o4o8s ) | 4 | 4 | * N starting figure: o4o8x
o8s8o (N → ∞) demi( . . . ) | 2N | 4 4 | 2 2 4 --------------+----+-------+------- sefa( o8s . ) | 2 | 4N * | 1 0 1 sefa( . s8o ) | 2 | * 4N | 0 1 1 --------------+----+-------+------- o8s . | 4 | 4 0 | N * * . s8o | 4 | 0 4 | * N * sefa( o8s8o ) | 4 | 2 2 | * * 2N starting figure: o8x8o
xØo4oØx (N → ∞) . . . . | N | 4 4 | 8 --------+---+-------+--- x . . . | 2 | 2N * | 2 . . . x | 2 | * 2N | 2 --------+---+-------+--- x . . x | 4 | 2 2 | 2N
© 2004-2025 | top of page |