Acronym tocth Name hyperbolic truncated (order 4) octahedral honeycomb Circumradius sqrt(-2) = 1.414214 i

This non-compact hyperbolic tesselation uses squat in the sense of an infinite horohedron as one of its cell types.

Incidence matrix according to Dynkin symbol

```x3x4o4o   (N,M → ∞)

. . . . | 6NM |   1    4 |   4   4 |  4  1
--------+-----+----------+---------+------
x . . . |   2 | 3NM    * |   4   0 |  4  0
. x . . |   2 |   * 12NM |   1   2 |  2  1
--------+-----+----------+---------+------
x3x . . |   6 |   3    3 | 4NM   * |  2  0
. x4o . |   4 |   0    4 |   * 6NM |  1  1
--------+-----+----------+---------+------
x3x4o . ♦  24 |  12   24 |   8   6 | NM  *
. x4o4o ♦   M |   0   2M |   0   M |  * 6N

snubbed forms: s3s4o4o
```

```o4x4o *b3x   (N,M → ∞)

. . .    . | 12NM |    4   1 |   2   2   4 |  1  2  2
-----------+------+----------+-------------+---------
. x .    . |    2 | 24NM   * |   1   1   1 |  1  1  1
. . .    x |    2 |    * 6NM |   0   0   4 |  0  2  2
-----------+------+----------+-------------+---------
o4x .    . |    4 |    4   0 | 6NM   *   * |  1  1  0
. x4o    . |    4 |    4   0 |   * 6NM   * |  1  0  1
. x . *b3x |    6 |    3   3 |   *   * 8NM |  0  1  1
-----------+------+----------+-------------+---------
o4x4o    . |   2M |   4M   0 |   M   M   0 | 6N  *  *
o4x . *b3x |   24 |   24  12 |   6   0   8 |  * NM  *
. x4o *b3x |   24 |   24  12 |   0   6   8 |  *  * NM
```

```x3xØx3*a3xØx3*a   (N,M → ∞)

. . .    . .    | 24NM |    1    1    1    1    1 |   1   1   1   1   1   1   1   1 |  1  1  1  1  1
----------------+------+--------------------------+---------------------------------+---------------
x . .    . .    |    2 | 12NM    *    *    *    * |   1   1   1   1   0   0   0   0 |  1  1  1  1  0
. x .    . .    |    2 |    * 12NM    *    *    * |   1   0   0   0   1   1   0   0 |  1  1  0  0  1
. . x    . .    |    2 |    *    * 12NM    *    * |   0   1   0   0   0   0   1   1 |  0  0  1  1  1
. . .    x .    |    2 |    *    *    * 12NM    * |   0   0   1   0   1   0   1   0 |  1  0  1  0  1
. . .    . x    |    2 |    *    *    *    * 12NM |   0   0   0   1   0   1   0   1 |  0  1  0  1  1
----------------+------+--------------------------+---------------------------------+---------------
x3x .    . .    |    6 |    3    3    0    0    0 | 4NM   *   *   *   *   *   *   * |  1  1  0  0  0
x . x3*a . .    |    6 |    3    0    3    0    0 |   * 4NM   *   *   *   *   *   * |  0  0  1  1  0
x . . *a3x .    |    6 |    3    0    0    3    0 |   *   * 4NM   *   *   *   *   * |  1  0  1  0  0
x . .    . x3*a |    6 |    3    0    0    0    3 |   *   *   * 4NM   *   *   *   * |  0  1  0  1  0
. x .    x .    |    4 |    0    2    0    2    0 |   *   *   *   * 6NM   *   *   * |  1  0  0  0  1
. x .    . x    |    4 |    0    2    0    0    2 |   *   *   *   *   * 6NM   *   * |  0  1  0  0  1
. . x    x .    |    4 |    0    0    2    2    0 |   *   *   *   *   *   * 6NM   * |  0  0  1  0  1
. . x    . x    |    4 |    0    0    2    0    2 |   *   *   *   *   *   *   * 6NM |  0  0  0  1  1
----------------+------+--------------------------+---------------------------------+---------------
x3x . *a3x .    ♦   24 |   12   12    0   12    0 |   4   0   4   0   6   0   0   0 | NM  *  *  *  *
x3x .    . x3*a ♦   24 |   12   12    0    0   12 |   4   0   0   4   0   6   0   0 |  * NM  *  *  *
x . x3*a3x .    ♦   24 |   12    0   12   12    0 |   0   4   4   0   0   0   6   0 |  *  * NM  *  *
x . x3*a . x3*a ♦   24 |   12    0   12    0   12 |   0   4   0   4   0   0   0   6 |  *  *  * NM  *
. xØx    xØx    ♦   4M |    0   2M   2M   2M   2M |   0   0   0   0   M   M   M   M |  *  *  *  * 6N
```