Acronym | ... |
Name |
hyperbolic x3o6o3o6*a honeycomb, hyperbolic triangular-tiling - hexagonal-tiling honeycomb |
Circumradius | 0 i |
External links |
This regular non-compact hyperbolic tesselation uses hexat, trat, and that in the sense of infinite horohedra for its cell types.
Incidence matrix according to Dynkin symbol
x3o6o3o6*a (N,M,K,L,P → ∞) . . . . | NKLP | 6M | 6M 6M | M 3M 2M -----------+------+--------+--------------+--------------- x . . . | 2 | 3NMKLP | 2 2 | 1 2 1 -----------+------+--------+--------------+--------------- x3o . . | 3 | 3 | 2NMKLP * | 1 1 0 x . . o6*a | 6 | 6 | * NMKLP | 0 1 1 -----------+------+--------+--------------+--------------- x3o6o . ♦ K | 3K | 2K 0 | NMLP * * x3o . o6*a ♦ 3L | 6L | 2L L | * NMKP * x . o3o6*a ♦ 2P | 3P | 0 P | * * NMKL
x3x3x3o3o3o3*aØ*d *b3*d3*f3*bØ*e *c3*e3*a3*cØ*f (N,M,K,L,P,Q,R,S,T → ∞) . . . . . . | NKLPQRST | 6M 6M 6M | 6M 6M 3M 3M 6M 3M 3M 3M 3M | 6M 3M 3M M 3M M M ------------------------------------------------+----------+----------------------------------+-------------------------------------------------------------------------------------------+--------------------------------------------------------------- x . . . . . | 2 | 3NMKLPQRST * * | 1 1 1 1 0 0 0 0 0 | 1 1 1 1 0 0 0 . x . . . . | 2 | * 3NMKLPQRST * | 1 0 0 0 1 1 1 0 0 | 1 1 0 0 1 1 0 . . x . . . | 2 | * * 3NMKLPQRST | 0 1 0 0 1 0 0 1 1 | 1 0 1 0 1 0 1 ------------------------------------------------+----------+----------------------------------+-------------------------------------------------------------------------------------------+--------------------------------------------------------------- x3x . . . . | 6 | 3 3 0 | NMKLPQRST * * * * * * * * | 1 1 0 0 0 0 0 x . x . . . *a3*c | 6 | 3 0 3 | * NMKLPQRST * * * * * * * | 1 0 1 0 0 0 0 x . . . o . *e3*a | 3 | 3 0 0 | * * NMKLPQRST * * * * * * | 0 0 1 1 0 0 0 x . . . . o3*a | 3 | 3 0 0 | * * * NMKLPQRST * * * * * | 0 1 0 1 0 0 0 . x3x . . . | 6 | 0 3 3 | * * * * NMKLPQRST * * * * | 1 0 0 0 1 0 0 . x . o . . *b3*d | 3 | 0 3 0 | * * * * * NMKLPQRST * * * | 0 0 0 0 1 1 0 . x . . . o *f3*b | 3 | 0 3 0 | * * * * * * NMKLPQRST * * | 0 1 0 0 0 1 0 . . x3o . . | 3 | 0 0 3 | * * * * * * * NMKLPQRST * | 0 0 0 0 1 0 1 . . x . o . *c3*e | 3 | 0 0 3 | * * * * * * * * NMKLPQRST | 0 0 1 0 0 0 1 ------------------------------------------------+----------+----------------------------------+-------------------------------------------------------------------------------------------+--------------------------------------------------------------- x3x3x . . . *a3*c ♦ 6K | 3K 3K 3K | K K 0 0 K 0 0 0 0 | NMLPQRST * * * * * * x3x . . . o3*a *f3*b ♦ 3L | 3L 3L 0 | L 0 0 L 0 0 L 0 0 | * NMKPQRST * * * * * x . x . o . *c3*e3*a3*c ♦ 3P | 3P 0 3P | 0 P P 0 0 0 0 0 P | * * NMKLQRST * * * * x . . . o3o3*a *e3*a ♦ Q | 3Q 0 0 | 0 0 Q Q 0 0 0 0 0 | * * * NMKLPRST * * * . x3x3o . . *b3*d ♦ 3R | 0 3R 3R | 0 0 0 0 R R 0 R 0 | * * * * NMKLPQST * * . x . o . o *b3*d3*f3*b ♦ S | 0 3S 0 | 0 0 0 0 0 S S 0 0 | * * * * * NMKLPQRT * . . x3o3o . *c3*e ♦ T | 0 0 3T | 0 0 0 0 0 0 0 T T | * * * * * * NMKLPQRS
x3o3x3o3x3o3*aØ*d *b3*d3*f3*bØ*e *c3*e3*a3*cØ*f (N,M,K,L,P,Q,R,S,T → ∞) . . . . . . | NKLPQRST | 6M 6M 6M | 3M 6M 6M 3M 3M 3M 6M 3M 3M | 3M M 6M 3M M 3M M ------------------------------------------------+----------+----------------------------------+-------------------------------------------------------------------------------------------+--------------------------------------------------------------- x . . . . . | 2 | 3NMKLPQRST * * | 1 1 1 1 0 0 0 0 0 | 1 1 1 1 0 0 0 . . x . . . | 2 | * 3NMKLPQRST * | 0 1 0 0 1 1 1 0 0 | 1 0 1 0 1 1 0 . . . . x . | 2 | * * 3NMKLPQRST | 0 0 1 0 0 0 1 1 1 | 0 0 1 1 0 1 1 ------------------------------------------------+----------+----------------------------------+-------------------------------------------------------------------------------------------+--------------------------------------------------------------- x3o . . . . | 3 | 3 0 0 | NMKLPQRST * * * * * * * * | 1 1 0 0 0 0 0 x . x . . . *a3*c | 6 | 3 3 0 | * NMKLPQRST * * * * * * * | 1 0 1 0 0 0 0 x . . . x . *e3*a | 6 | 3 0 3 | * * NMKLPQRST * * * * * * | 0 0 1 1 0 0 0 x . . . . o3*a | 3 | 3 0 0 | * * * NMKLPQRST * * * * * | 0 1 0 1 0 0 0 . o3x . . . | 3 | 0 3 0 | * * * * NMKLPQRST * * * * | 1 0 0 0 1 0 0 . . x3o . . | 3 | 0 3 0 | * * * * * NMKLPQRST * * * | 0 0 0 0 1 1 0 . . x . x . *c3*e | 6 | 0 3 3 | * * * * * * NMKLPQRST * * | 0 0 1 0 0 1 0 . . . o3x . | 3 | 0 0 3 | * * * * * * * NMKLPQRST * | 0 0 0 0 0 1 1 . . . . x3o | 3 | 0 0 3 | * * * * * * * * NMKLPQRST | 0 0 0 1 0 0 1 ------------------------------------------------+----------+----------------------------------+-------------------------------------------------------------------------------------------+--------------------------------------------------------------- x3o3x . . . *a3*c ♦ 3K | 3K 3K 0 | K K 0 0 K 0 0 0 0 | NMLPQRST * * * * * * x3o . . . o3*a *f3*b ♦ L | 3L 0 0 | L 0 0 L 0 0 0 0 0 | * NMKPQRST * * * * * x . x . x . *c3*e3*a3*c ♦ 6P | 3P 3P 3P | 0 P P 0 0 0 P 0 0 | * * NMKLQRST * * * * x . . . x3o3*a *e3*a ♦ 3Q | 3Q 0 3Q | 0 0 Q Q 0 0 0 0 Q | * * * NMKLPRST * * * . o3x3o . . *b3*d ♦ R | 0 3R 0 | 0 0 0 0 R R 0 0 0 | * * * * NMKLPQST * * . . x3o3x . *c3*e ♦ 3S | 0 3S 3S | 0 0 0 0 0 S S S 0 | * * * * * NMKLPQRT * . . . o3x3o *d3*f ♦ T | 0 0 3T | 0 0 0 0 0 0 0 T T | * * * * * * NMKLPQRS (in fact, this is just a different linearization of the same, but differently oriented extended Dynkin symbol, as above)
© 2004-2024 | top of page |