Acronym | thiph |
Name | triangular-hexagonal prismatic honeycomb |
© © | |
Confer |
|
External links |
This honeycomb can be considered as the inifinite blend (or stack) of a single monostratic slab thereof, which is thattip.
Incidence matrix according to Dynkin symbol
x∞o o3x6o (N → ∞) . . . . . | 3N | 2 4 | 8 2 2 | 4 4 ----------+----+-------+---------+----- x . . . . | 2 | 3N * | 4 0 0 | 2 2 . . . x . | 2 | * 6N | 2 1 1 | 2 2 ----------+----+-------+---------+----- x . . x . | 4 | 2 2 | 6N * * | 1 1 . . o3x . | 3 | 0 3 | * 2N * | 2 0 . . . x6o | 6 | 0 6 | * * N | 0 2 ----------+----+-------+---------+----- x . o3x . ♦ 6 | 3 6 | 3 2 0 | 2N * x . . x6o ♦ 12 | 6 12 | 6 0 2 | * N
x∞x o3x6o (N → ∞) . . . . . | 6N | 1 1 4 | 4 4 2 2 | 2 2 2 2 ----------+----+-----------+-------------+---------- x . . . . | 2 | 3N * * | 4 0 0 0 | 2 2 0 0 . x . . . | 2 | * 3N * | 0 4 0 0 | 0 0 2 2 . . . x . | 2 | * * 12N | 1 1 1 1 | 1 1 1 1 ----------+----+-----------+-------------+---------- x . . x . | 4 | 2 0 2 | 6N * * * | 1 1 0 0 . x . x . | 4 | 0 2 2 | * 6N * * | 0 0 1 1 . . o3x . | 3 | 0 0 3 | * * 4N * | 1 0 1 0 . . . x6o | 6 | 0 0 6 | * * * 2N | 0 1 0 1 ----------+----+-----------+-------------+---------- x . o3x . ♦ 6 | 3 0 6 | 3 0 2 0 | 2N * * * x . . x6o ♦ 12 | 6 0 12 | 6 0 0 2 | * N * * . x o3x . ♦ 6 | 0 3 6 | 0 3 2 0 | * * 2N * . x . x6o ♦ 12 | 0 6 12 | 0 6 0 2 | * * * N
x∞o x3x3o3*c (N → ∞) . . . . . | 3N | 2 2 2 | 4 4 2 1 1 | 4 2 2 -------------+----+----------+-------------+------ x . . . . | 2 | 3N * * | 2 2 0 0 0 | 2 1 1 . . x . . | 2 | * 3N * | 2 0 1 1 0 | 2 2 0 . . . x . | 2 | * * 3N | 0 2 1 0 1 | 2 0 2 -------------+----+----------+-------------+------ x . x . . | 4 | 2 2 0 | 3N * * * * | 1 1 0 x . . x . | 4 | 2 0 2 | * 3N * * * | 1 0 1 . . x3x . | 6 | 0 3 3 | * * N * * | 2 0 0 . . x . o3*c | 3 | 0 3 0 | * * * N * | 0 2 0 . . . x3o | 3 | 0 0 3 | * * * * N | 0 0 2 -------------+----+----------+-------------+------ x . x3x . ♦ 12 | 6 6 6 | 3 3 2 0 0 | N * * x . x . o3*c ♦ 6 | 3 6 0 | 3 0 0 2 0 | * N * x . . x3o ♦ 6 | 3 0 6 | 0 3 0 0 2 | * * N
x∞x x3x3o3*c (N → ∞) . . . . . | 6N | 1 1 2 2 | 2 2 2 2 2 1 1 | 2 1 1 2 1 1 -------------+----+-------------+----------------------+------------ x . . . . | 2 | 3N * * * | 2 2 0 0 0 0 0 | 2 1 1 0 0 0 . x . . . | 2 | * 3N * * | 0 0 2 2 0 0 0 | 0 0 0 2 1 1 . . x . . | 2 | * * 6N * | 1 0 1 0 1 1 0 | 1 1 0 1 1 0 . . . x . | 2 | * * * 6N | 0 1 0 1 1 0 1 | 1 0 1 1 0 1 -------------+----+-------------+----------------------+------------ x . x . . | 4 | 2 0 2 0 | 3N * * * * * * | 1 1 0 0 0 0 x . . x . | 4 | 2 0 0 2 | * 3N * * * * * | 1 0 1 0 0 0 . x x . . | 4 | 0 2 2 0 | * * 3N * * * * | 0 0 0 1 1 0 . x . x . | 4 | 0 2 0 2 | * * * 3N * * * | 0 0 0 1 0 1 . . x3x . | 6 | 0 0 3 3 | * * * * 2N * * | 1 0 0 1 0 0 . . x . o3*c | 3 | 0 0 3 0 | * * * * * 2N * | 0 1 0 0 1 0 . . . x3o | 3 | 0 0 0 3 | * * * * * * 2N | 0 0 1 0 0 1 -------------+----+-------------+----------------------+------------ x . x3x . ♦ 12 | 6 0 6 6 | 3 3 0 0 2 0 0 | N * * * * * x . x . o3*c ♦ 6 | 3 0 6 0 | 3 0 0 0 0 2 0 | * N * * * * x . . x3o ♦ 6 | 3 0 0 6 | 0 3 0 0 0 0 2 | * * N * * * . x x3x . ♦ 12 | 0 6 6 6 | 0 0 3 3 2 0 0 | * * * N * * . x x . o3*c ♦ 6 | 0 3 6 0 | 0 0 3 0 0 2 0 | * * * * N * . x . x3o ♦ 6 | 0 3 0 6 | 0 0 0 3 0 0 2 | * * * * * N
© 2004-2024 | top of page |