Acronym thiph
Name triangular-hexagonal prismatic honeycomb
 
 © ©
Confer
related tesselations:
thattip  
External
links
wikipedia   polytopewiki

This honeycomb can be considered as the inifinite blend (or stack) of a single monostratic slab thereof, which is thattip.


Incidence matrix according to Dynkin symbol

x∞o o3x6o   (N → ∞)

. . . . . | 3N |  2  4 |  8  2 2 |  4 4
----------+----+-------+---------+-----
x . . . . |  2 | 3N  * |  4  0 0 |  2 2
. . . x . |  2 |  * 6N |  2  1 1 |  2 2
----------+----+-------+---------+-----
x . . x . |  4 |  2  2 | 6N  * * |  1 1
. . o3x . |  3 |  0  3 |  * 2N * |  2 0
. . . x6o |  6 |  0  6 |  *  * N |  0 2
----------+----+-------+---------+-----
x . o3x .   6 |  3  6 |  3  2 0 | 2N *
x . . x6o  12 |  6 12 |  6  0 2 |  * N

x∞x o3x6o   (N → ∞)

. . . . . | 6N |  1  1   4 |  4  4  2  2 |  2 2  2 2
----------+----+-----------+-------------+----------
x . . . . |  2 | 3N  *   * |  4  0  0  0 |  2 2  0 0
. x . . . |  2 |  * 3N   * |  0  4  0  0 |  0 0  2 2
. . . x . |  2 |  *  * 12N |  1  1  1  1 |  1 1  1 1
----------+----+-----------+-------------+----------
x . . x . |  4 |  2  0   2 | 6N  *  *  * |  1 1  0 0
. x . x . |  4 |  0  2   2 |  * 6N  *  * |  0 0  1 1
. . o3x . |  3 |  0  0   3 |  *  * 4N  * |  1 0  1 0
. . . x6o |  6 |  0  0   6 |  *  *  * 2N |  0 1  0 1
----------+----+-----------+-------------+----------
x . o3x .   6 |  3  0   6 |  3  0  2  0 | 2N *  * *
x . . x6o  12 |  6  0  12 |  6  0  0  2 |  * N  * *
. x o3x .   6 |  0  3   6 |  0  3  2  0 |  * * 2N *
. x . x6o  12 |  0  6  12 |  0  6  0  2 |  * *  * N

x∞o x3x3o3*c    (N → ∞)

. . . . .    | 3N |  2  2  2 |  4  4 2 1 1 | 4 2 2
-------------+----+----------+-------------+------
x . . . .    |  2 | 3N  *  * |  2  2 0 0 0 | 2 1 1
. . x . .    |  2 |  * 3N  * |  2  0 1 1 0 | 2 2 0
. . . x .    |  2 |  *  * 3N |  0  2 1 0 1 | 2 0 2
-------------+----+----------+-------------+------
x . x . .    |  4 |  2  2  0 | 3N  * * * * | 1 1 0
x . . x .    |  4 |  2  0  2 |  * 3N * * * | 1 0 1
. . x3x .    |  6 |  0  3  3 |  *  * N * * | 2 0 0
. . x . o3*c |  3 |  0  3  0 |  *  * * N * | 0 2 0
. . . x3o    |  3 |  0  0  3 |  *  * * * N | 0 0 2
-------------+----+----------+-------------+------
x . x3x .     12 |  6  6  6 |  3  3 2 0 0 | N * *
x . x . o3*c   6 |  3  6  0 |  3  0 0 2 0 | * N *
x . . x3o      6 |  3  0  6 |  0  3 0 0 2 | * * N

x∞x x3x3o3*c    (N → ∞)

. . . . .    | 6N |  1  1  2  2 |  2  2  2  2  2  1  1 | 2 1 1 2 1 1
-------------+----+-------------+----------------------+------------
x . . . .    |  2 | 3N  *  *  * |  2  2  0  0  0  0  0 | 2 1 1 0 0 0
. x . . .    |  2 |  * 3N  *  * |  0  0  2  2  0  0  0 | 0 0 0 2 1 1
. . x . .    |  2 |  *  * 6N  * |  1  0  1  0  1  1  0 | 1 1 0 1 1 0
. . . x .    |  2 |  *  *  * 6N |  0  1  0  1  1  0  1 | 1 0 1 1 0 1
-------------+----+-------------+----------------------+------------
x . x . .    |  4 |  2  0  2  0 | 3N  *  *  *  *  *  * | 1 1 0 0 0 0
x . . x .    |  4 |  2  0  0  2 |  * 3N  *  *  *  *  * | 1 0 1 0 0 0
. x x . .    |  4 |  0  2  2  0 |  *  * 3N  *  *  *  * | 0 0 0 1 1 0
. x . x .    |  4 |  0  2  0  2 |  *  *  * 3N  *  *  * | 0 0 0 1 0 1
. . x3x .    |  6 |  0  0  3  3 |  *  *  *  * 2N  *  * | 1 0 0 1 0 0
. . x . o3*c |  3 |  0  0  3  0 |  *  *  *  *  * 2N  * | 0 1 0 0 1 0
. . . x3o    |  3 |  0  0  0  3 |  *  *  *  *  *  * 2N | 0 0 1 0 0 1
-------------+----+-------------+----------------------+------------
x . x3x .     12 |  6  0  6  6 |  3  3  0  0  2  0  0 | N * * * * *
x . x . o3*c   6 |  3  0  6  0 |  3  0  0  0  0  2  0 | * N * * * *
x . . x3o      6 |  3  0  0  6 |  0  3  0  0  0  0  2 | * * N * * *
. x x3x .     12 |  0  6  6  6 |  0  0  3  3  2  0  0 | * * * N * *
. x x . o3*c   6 |  0  3  6  0 |  0  0  3  0  0  2  0 | * * * * N *
. x . x3o      6 |  0  3  0  6 |  0  0  0  3  0  0  2 | * * * * * N

© 2004-2024
top of page