Acronym | shaha |
Name | small hexahexaapeirogonal tiling |
© | |
Vertex figure | [6,12/5,∞,12/5] |
External links |
As abstract polytope shaha is isomorphic to ghaha, thereby replacing dodecagrams by dodecagons and prograde hexagons by retrograde ones.
o6x6/5x∞*a (N,M → ∞) . . . | 6NM | 2 2 | 1 1 2 -----------+-----+---------+--------- . x . | 2 | 6NM * | 1 0 1 . . x | 2 | * 6NM | 0 1 1 -----------+-----+---------+--------- o6x . | 6 | 6 0 | NM * * o . x∞*a ♦ M | 0 M | * 6N * . x6/5x | 12 | 6 6 | * * NM
x6/5x6/5o∞'*a (N,M → ∞) . . . | 6NM | 2 2 | 2 1 1 --------------+-----+---------+--------- x . . | 2 | 6NM * | 1 1 0 . x . | 2 | * 6NM | 1 0 1 --------------+-----+---------+--------- x6/5x . | 12 | 6 6 | NM * * x . o∞'*a ♦ M | M 0 | * 6N * . x6/5o | 6 | 0 6 | * * NM
© 2004-2025 | top of page |