Acronym | ... |
Name | hyperbolic honeycomb with seed point at edge of right-angled octahedron domain |
This non-compact hyperbolic tesselation uses the euclidean tiling squat in the sense of an infinite horohedron as its single cell type.
The vertex figure should be a variant of the tetragonal partial Stott expaded co, i.e. of uxu4oqo&#xt.
Incidence matrix according to Dynkin symbol
o4xØx4*a4xØo4*a . . . . . | NMKLPQ | 4 4 8 | 4 4 4 8 8 | 4 1 4 1 4 ----------------+--------+-------------------------+--------------------------------------+------------------------------- . x . . . | 2 | 2NMKLPQ * * | 2 0 0 2 0 | 2 1 0 0 1 . . x . . | 2 | * 2NMKLPQ * | 0 2 0 0 2 | 0 0 2 1 1 . . . x . | 2 | * * 4NMKLPQ | 0 0 1 1 1 | 1 0 1 0 1 ----------------+--------+-------------------------+--------------------------------------+------------------------------- o4x . . . | 4 | 4 0 0 | NMKLPQ * * * * | 1 1 0 0 0 o . x4*a . . | 4 | 0 4 0 | * NMKLPQ * * * | 0 0 1 1 0 o . . *a4x . | 4 | 0 0 4 | * * NMKLPQ * * | 1 0 1 0 0 . x . x . | 4 | 2 0 2 | * * * 2NMKLPQ * | 1 0 0 0 1 . . x x . | 4 | 0 2 2 | * * * * 2NMKLPQ | 0 0 1 0 1 ----------------+--------+-------------------------+--------------------------------------+------------------------------- o4x . *a4x . ♦ 4M | 4M 0 4M | M 0 M 2M 0 | NKLPQ * * * * o4x . . o4*a ♦ K | 2K 0 0 | K 0 0 0 0 | * NMLPQ * * * o . x4*a4x . ♦ 4L | 0 4L 4L | 0 L L 0 2K | * * NMKPQ * * o . x4*a . o4*a ♦ P | 0 2P 0 | 0 P 0 0 0 | * * * NMKLQ * . xØx xØo ♦ 2Q | Q Q 2Q | 0 0 0 Q Q | * * * * 2NMKLP
octahedral Coxeter domain with boundary pattern: b e g a h c d f oØxØxØxØoØxØxØxØ*aØ*cØ*gØ*eØ*hØ*fØ*bØ*dØ*a (N,M,K,L,P,Q,R → ∞) a b c d e f g h . . . . . . . . | NMKLPQR | 2 2 4 2 2 4 | 4 4 4 4 4 4 4 | 1 1 2 2 4 4 -------------------------------------------+---------+---------------------------------------------------+---------------------------------------------------------+------------------------------------------ . x . . . . . . | 2 | NMKLPQR * * * * * | 2 2 0 0 0 0 0 | 1 0 0 1 2 0 . . x . . . . . | 2 | * NMKLPQR * * * * | 0 0 2 2 0 0 0 | 0 1 0 1 0 2 . . . x . . . . | 2 | * * 2NMKLPQR * * * | 0 0 0 0 1 1 1 | 0 0 1 0 1 1 . . . . . x . . | 2 | * * * NMKLPQR * * | 0 0 2 0 2 0 0 | 0 1 1 0 0 2 . . . . . . x . | 2 | * * * * NMKLPQR * | 2 0 0 0 0 2 0 | 1 0 1 0 2 0 . . . . . . . x | 2 | * * * * * 2NMKLPQR | 0 1 0 1 0 0 1 | 0 0 0 1 1 1 -------------------------------------------+---------+---------------------------------------------------+---------------------------------------------------------+------------------------------------------ . x . . . . x . | 4 | 2 0 0 0 2 0 | NMKLPQR * * * * * * | 1 0 0 0 1 0 . x . . . . . x | 4 | 2 0 0 0 0 2 | * NMKLPQR * * * * * | 0 0 0 1 1 0 . . x . . x . . | 4 | 0 2 0 2 0 0 | * * NMKLPQR * * * * | 0 1 0 0 0 1 . . x . . . . x | 4 | 0 2 0 0 0 2 | * * * NMKLPQR * * * | 0 0 0 1 0 1 . . . x . x . . | 4 | 0 0 2 2 0 0 | * * * * NMKLPQR * * | 0 0 1 0 0 1 . . . x . . x . | 4 | 0 0 2 0 2 0 | * * * * * NMKLPQR * | 0 0 1 0 1 0 . . . x . . . x | 4 | 0 0 2 0 0 2 | * * * * * * NMKLPQR | 0 0 0 0 1 1 -------------------------------------------+---------+---------------------------------------------------+---------------------------------------------------------+------------------------------------------ oØx . . o . x . *gØ*e ♦ M | M 0 0 0 M 0 | M 0 0 0 0 0 0 | NKLPQR * * * * * o . x . oØx . . *aØ*c ♦ K | 0 K 0 K 0 0 | 0 0 K 0 0 0 0 | * NMLPQR * * * * o . . x . xØx . *dØ*a ♦ 2L | 0 0 2L L L 0 | 0 0 0 0 L L 0 | * * NMKPQR * * * . xØx . o . . x *eØ*h ♦ 2P | P P 0 0 0 2P | 0 P 0 P 0 0 0 | * * * NMKLQR * * . x . x . . xØx *bØ*d ♦ 4Q | 2Q 0 2Q 0 2Q 2Q | Q Q 0 0 0 Q Q | * * * * NMKLPR * . . xØx . x . x *hØ*f ♦ 4R | 0 2R 2R 2R 0 2R | 0 0 R R R 0 R | * * * * * NMKLPQ
or NMKL | 8 8 | 8 16 4 | 2 4 8 -----+-------------+------------------+--------------- 2 | 4NMKL * | 2 2 0 | 1 1 2 b,c,f,g 2 | * 4NMKL | 0 2 1 | 0 1 2 d,h -----+-------------+------------------+--------------- 4 | 4 0 | 2NMKL * * | 1 0 1 4 | 2 2 | * 4NMKL * | 0 1 1 4 | 0 4 | * * NMKL | 0 0 2 -----+-------------+------------------+--------------- ♦ M | 2M 0 | M 0 0 | 2NKL * * ♦ K | K K | 0 K 0 | * 4NML * ♦ 4L | 4L 4L | L 2L L | * * 2NMK
© 2004-2024 | top of page |